R Loops Stimulate Genetic Instability of CTG · CAG Repeats

Transcription stimulates the genetic instability of trinucleotide repeat sequences. However, the mechanisms leading to transcriptiondependent repeat length variation are unclear. We demonstrate, using biochemical and genetic approaches, that the formation of stable RNA • DNA hybrids enhances the ins...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 2; pp. 692 - 697
Main Authors Lin, Yunfu, Dent, Sharon Y. R., Wilson, John H., Wells, Robert D., Napierala, Marek, Hanawalt, Philip C.
Format Journal Article
LanguageEnglish
Published Washington National Academy of Sciences 12.01.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transcription stimulates the genetic instability of trinucleotide repeat sequences. However, the mechanisms leading to transcriptiondependent repeat length variation are unclear. We demonstrate, using biochemical and genetic approaches, that the formation of stable RNA • DNA hybrids enhances the instability of CTG . CAG repeat tracts. In vitro transcribed CG-rich repeating sequences, unlike AT-rich repeats and nonrepeating sequences, form stable, ribonuclease A-resistant structures. These RNA . DNA hybrids are eliminated by ribonuclease H treatment. Mutation in the rnhA1 gene that decreases the activity of ribonuclease HI stimulates the instability of CTG . CAG repeats in E coli. Importantly, the effect of ribonuclease HI depletion on repeat instability requires active transcription. We also showed that transcription-dependent CTG . CAG repeat instability in human cells is stimulated by siRNA knockdown of RNase H1 and H2. In addition, we used bisulfite modification, which detects single-stranded DNA, to demonstrate that the nontemplate DNA strand at transcribed CTG . CAG repeats remains partially single-stranded in human genomic DNA, thus indicating that it is displaced by an RNA . DNA hybrid. These studies demonstrate that persistent hybrids between the nascent RNA transcript and the template DNA strand at CTG . CAG tracts promote instability of DNA trinucleotide repeats.
Bibliography:Author contributions: Y.L., J.H.W., R.D.W., and M.N. designed research; Y.L. and M.N. performed research; S.Y.R.D., J.H.W., and R.D.W. contributed new reagents/analytic tools; Y.L. and M.N. analyzed data; and J.H.W., R.D.W., and M.N. wrote the paper.
Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved November 27, 2009 (received for review August 26, 2009)
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0909740107