3D Characterization of the Molecular Neighborhood of • OH Radical in High Temperature Water by MD Simulation and Voronoi Polyhedra
Understanding the properties of the OH radical in aqueous environments is essential for biochemistry, atmospheric chemistry, and the development of green chemistry technologies. In particular, the technological applications involve knowledge of microsolvation of the OH radical in high temperature wa...
Saved in:
Published in | International journal of molecular sciences Vol. 24; no. 4; p. 3294 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Understanding the properties of the
OH radical in aqueous environments is essential for biochemistry, atmospheric chemistry, and the development of green chemistry technologies. In particular, the technological applications involve knowledge of microsolvation of the
OH radical in high temperature water. In this study, the classical molecular dynamics (MD) simulation and the technique based on the construction of Voronoi polyhedra were used to provide 3D characteristics of the molecular vicinity of the aqueous hydroxyl radical (
OH
). The statistical distribution functions of metric and topological features of solvation shells represented by the constructed Voronoi polyhedra are reported for several thermodynamic states of water, including the pressurized high-temperature liquid and supercritical fluid. Calculations showed a decisive influence of the water density on the geometrical properties of the
OH solvation shell in the sub- and supercritical region: with the decreasing density, the span and asymmetry of the solvation shell increase. We also showed that the 1D analysis based on the oxygen-oxygen radial distribution functions (RDFs) overestimates the solvation number of
OH and insufficiently reflects the influence of transformations in the hydrogen-bonded network of water on the structure of the solvation shell. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24043294 |