Active propagation of somatic action potentials into neocortical pyramidal cell dendrites

The dendrites of neurons in the mammalian central nervous system have been considered as electrically passive structures which funnel synaptic potentials to the soma and axon initial segment, the site of action potential initiation. More recent studies, however, have shown that the dendrites of many...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 367; no. 6458; pp. 69 - 72
Main Authors Stuart, Greg J, Sakmann, Bert
Format Journal Article
LanguageEnglish
Published London Nature Publishing 06.01.1994
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The dendrites of neurons in the mammalian central nervous system have been considered as electrically passive structures which funnel synaptic potentials to the soma and axon initial segment, the site of action potential initiation. More recent studies, however, have shown that the dendrites of many neurons are not passive, but contain active conductances. The role of these dendritic voltage-activated channels in the initiation of action potentials in neurons is largely unknown. To assess this directly, patch-clamp recordings were made from the dendrites of neocortical pyramidal cells in brain slices. Voltage-activated sodium currents were observed in dendritic outside-out patches, while action potentials could be evoked by depolarizing current pulses or by synaptic stimulation during dendritic whole-cell recordings. To determine the site of initiation of these action potentials, simultaneous whole-cell recordings were made from the soma and the apical dendrite or axon of the same cell. These experiments showed that action potentials are initiated first in the axon and then actively propagate back into the dendritic tree.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0028-0836
1476-4687
DOI:10.1038/367069a0