New Gd3+ and Mn2+-Co-Doped Scheelite-Type Ceramics—Their Structural, Optical and Magnetic Properties

New Gd3+- and Mn2+-co-doped calcium molybdato-tungstates with the chemical formula of Ca1−3x−yMny▯xGd2x(MoO4)1−3x(WO4)3x (labeled later as CaMnGdMoWO), where ▯ denotes vacant sites in the crystal lattice, 0 < x ≤ 0.2500 and y = 0.0200 as well as 0 < y ≤ 0.0667 and x = 0.1667 were successfully...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 23; no. 24; p. 15740
Main Authors Fuks, Hubert, Kochmański, Paweł, Tomaszewicz, Elżbieta
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 12.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:New Gd3+- and Mn2+-co-doped calcium molybdato-tungstates with the chemical formula of Ca1−3x−yMny▯xGd2x(MoO4)1−3x(WO4)3x (labeled later as CaMnGdMoWO), where ▯ denotes vacant sites in the crystal lattice, 0 < x ≤ 0.2500 and y = 0.0200 as well as 0 < y ≤ 0.0667 and x = 0.1667 were successfully synthesized by high-temperature solid-state reaction method and combustion route. Obtained ceramic materials crystallize in scheelite-type structure with space group I41/a. Morphological features and grain sizes of powders under study were investigated by SEM technique. Spectroscopic studies within the UV-vis spectral range were carried out to estimate the direct band gap (Eg) and Urbach energy (EU) of obtained powders. EPR studies confirmed the existence of two types of magnetic objects, i.e., Mn2+ and Gd3+ ions, and significant antiferromagnetic (AFM) interactions among them.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms232415740