Arabidopsis SKU6/SPIRAL1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion

The sku6-1 mutant of Arabidopsis thaliana exhibits altered patterns of root and organ growth. sku6 roots, etiolated hypocotyls, and leaf petioles exhibit right-handed axial twisting, and root growth on inclined agar media is strongly right skewed. The touch-dependent sku6 root skewing phenotype is s...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 16; no. 6; pp. 1506 - 1520
Main Authors Sedbrook, J.C, Ehrhardt, D.W, Fisher, S.E, Scheible, W.R, Somerville, C.R
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.06.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The sku6-1 mutant of Arabidopsis thaliana exhibits altered patterns of root and organ growth. sku6 roots, etiolated hypocotyls, and leaf petioles exhibit right-handed axial twisting, and root growth on inclined agar media is strongly right skewed. The touch-dependent sku6 root skewing phenotype is suppressed by the antimicrotubule drugs propyzamide and oryzalin, and right skewing is exacerbated by cold treatment. Cloning revealed that sku6-1 is allelic to spiral1-1 (spr1-1). However, modifiers in the Columbia (Col) and Landsberg erecta (Ler) ecotype backgrounds mask noncomplementation in sku6-1 (Col)/spr1-1 (Ler) F1 plants. The SPR1 gene encodes a plant-specific 12-kD protein that is ubiquitously expressed and belongs to a six-member gene family in Arabidopsis. An SPR1:green fluorescent protein (GFP) fusion expressed in transgenic seedlings localized to microtubules within the cortical array, preprophase band, phragmoplast, and mitotic spindle. SPR1:GFP was concentrated at the growing ends of cortical microtubules and was dependent on polymer growth state; the microtubule-related fluorescence dissipated upon polymer shortening. The protein has a repeated motif at both ends, separated by a predicted rod-like domain, suggesting that it may act as an intermolecular linker. These observations suggest that SPR1 is involved in microtubule polymerization dynamics and/or guidance, which in turn influences touch-induced directional cell expansion and axial twisting.
Bibliography:http://www.plantcell.org/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1040-4651
1532-298X
1532-298X
DOI:10.1105/tpc.020644