Selective Laser Sintering of High-Temperature Thermoset Polymer

Thermoplastic materials such as PA12 and PA6 have been extensively employed in Selective Laser Sintering (SLS) 3D printing applications due to their printability, processability, and crystalline structure. However, thermoplastic-based materials lack polymer inter-chain bonding, resulting in inferior...

Full description

Saved in:
Bibliographic Details
Published inJournal of composites science Vol. 6; no. 2; p. 41
Main Authors Hassan, Md Sahid, Billah, Kazi Md Masum, Hall, Samuel Ernesto, Sepulveda, Sergio, Regis, Jaime Eduardo, Marquez, Cory, Cordova, Sergio, Whitaker, Jasmine, Robison, Thomas, Keating, James, Shafirovich, Evgeny, Lin, Yirong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thermoplastic materials such as PA12 and PA6 have been extensively employed in Selective Laser Sintering (SLS) 3D printing applications due to their printability, processability, and crystalline structure. However, thermoplastic-based materials lack polymer inter-chain bonding, resulting in inferior mechanical and thermal properties and relatively low fatigue behavior. Therefore, 3D printing of high-performance crosslinked thermosets using SLS technology is paramount to pursue as an alternative to thermoplastics. In this work, a thermoset resin was successfully 3D printed using SLS, and its thermal stability of printed parts after a multi-step post-curing process was investigated. Dimensionally stable and high glass transition temperature (Tg: ~300 °C) thermoset parts were fabricated using SLS. The polymer crosslinking mechanism during the printing and curing process was investigated through FTIR spectra, while the mechanical stability of the SLS 3D-printed thermoset was characterized through compression tests. It is found that 100% crosslinked thermoset can be 3D printed with 900% higher compressive strength than printed green parts.
Bibliography:NA-0004051; NA 0003865
USDOE National Nuclear Security Administration (NNSA)
ISSN:2504-477X
2504-477X
DOI:10.3390/jcs6020041