Has_circ_0010220 regulates the miR-574-3p/IL-6 axis to increase doxorubicin resistance in osteosarcoma
Background Osteosarcoma (OS) is the most common primary bone malignancy. It has an aggressive nature and produces drug resistance in diseased patients, which in turn causes obstacles in treating cancer with chemotherapy. The objective of our investigation was to analyze the function and hsa_circ_001...
Saved in:
Published in | Human & experimental toxicology Vol. 41; p. 9603271221131307 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.09.2022
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background
Osteosarcoma (OS) is the most common primary bone malignancy. It has an aggressive nature and produces drug resistance in diseased patients, which in turn causes obstacles in treating cancer with chemotherapy. The objective of our investigation was to analyze the function and hsa_circ_0010220 mechanism in doxorubicin (DOX) resistance to OS.
Methods
The hsa_circ_0010220, IL-6, and miR-574-3p levels in OS diseased tissues and cell resistance towards DOX drug were elucidated by qRT-PCR and Elisa assay. The DOX half-inhibitory concentration (IC50) was quantified by Cell Counting Kit-8. For this study, we used RNA pull-down, RNA immunoprecipitation, and a dual-luciferase reporter experiment to identify the proteins that interacted with has_circ_0010220, IL-6, and miR-574-3p in OS cells that have developed resistance towards DOX.
Results
The results indicated upregulated Hsa_circ_0010220 and IL-6 expression, However, DOX-resistant OS tissues and cells showed a downregulation of miR-574-3p. Reducing DOX resistance in vitro was achieved by silencing Has_circ_0010220. Further, by sponging miR-574-3p, increasing has_circ_0010220 boosted DOX resistance. However, miR-574-3p bound to IL-6 and inhibited DOX resistance. Additionally, it was discovered that hsa_circ_0010220 sponged miR-574-3p for upregulating IL-6 expression.
Conclusions
Hsa_circ_0010220 encouraged OS resistance to DOX by miR-574-3p/IL-6 axis regulation, suggesting its potency as a promising biomarker for treating OS. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0960-3271 1477-0903 |
DOI: | 10.1177/09603271221131307 |