Development of a Tri-Functional Nanoprobe for Background-Free SERS Detection of Sialic Acid on the Cell Surface

Sialic acid (SA) on the surface of cells is indispensable in numerous physiological and pathological processes, and sensitive and reproducible detection of SA is crucial for diagnosis and therapy in many diseases. Here, we developed a tri-functional nanoprobe as a sensitive and straightforward surfa...

Full description

Saved in:
Bibliographic Details
Published inChemosensors Vol. 9; no. 5; p. 92
Main Authors Renata, Septila, Verma, Nitish, Tu, Zhijay, Pan, Rong-Long, Hofmann, Mario, Lin, Chun-Hung
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sialic acid (SA) on the surface of cells is indispensable in numerous physiological and pathological processes, and sensitive and reproducible detection of SA is crucial for diagnosis and therapy in many diseases. Here, we developed a tri-functional nanoprobe as a sensitive and straightforward surface-enhanced Raman spectroscopy (SERS) nanoprobe for sialoglycan detection on cell surfaces. The reporter was designed to provide three key functionalities that make it ideal for SA detection. First, we employed two recognition groups, phenylboronic acid and an ammonium group, that enhance SA recognition and capture efficiency. Second, we used cyano as the Raman reporter because it emits in the cellular Raman silent region. Finally, thiol acted as an anchoring agent to conjugate the reporter to silver nanocubes to provide SERS enhancement. Our molecular nanoprobe design demonstrated the ability to detect SA on the cell surface with high sensitivity and spatial resolution, opening up new routes to cellular diagnostics.
ISSN:2227-9040
2227-9040
DOI:10.3390/chemosensors9050092