Tracking Structural Deactivation of H-Ferrierite Zeolite Catalyst During MTH with XRD
We used the methanol-to-hydrocarbon (MTH) reaction as a shape-selective model reaction to investigate coke formation in zeolite H-Ferrierite. Despite being a 2D topology in terms of channel propagation, the FER framework displays a lattice expansion in all three dimensions of space upon deactivation...
Saved in:
Published in | Topics in catalysis Vol. 66; no. 17-18; pp. 1418 - 1426 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We used the methanol-to-hydrocarbon (MTH) reaction as a shape-selective model reaction to investigate coke formation in zeolite H-Ferrierite. Despite being a 2D topology in terms of channel propagation, the FER framework displays a lattice expansion in all three dimensions of space upon deactivation. Therefore, the volume of the unit cell is an excellent X-Ray diffraction (XRD) descriptor for the catalyst deactivation. A model with dummy atoms added, also proved to be an accurate approach to measure the amount of internal coke and/or water inside the pore network correlated with thermogravimetric analysis results. While the catalyst deactivation of the H-Ferrerite during the MTH was fast, a comparably long induction period was observed. We were able to track such fast deactivation with the aforementioned descriptors by means of an
operando
XRD study by a standard laboratory diffractometer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1022-5528 1572-9028 |
DOI: | 10.1007/s11244-023-01780-0 |