Development of a High-Throughput Assay to Identify Inhibitors of ENPP1

The innate immune response to cancer is initiated by cytosolic DNA, where it binds to cGAS and triggers type I interferon (IFN) expression via the STING receptor, leading to activation of tumor-specific T cells. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as the pr...

Full description

Saved in:
Bibliographic Details
Published inSLAS discovery Vol. 26; no. 5; pp. 740 - 746
Main Authors Kumar, Meera, Lowery, Robert G.
Format Journal Article
LanguageEnglish
Published Los Angeles, CA Elsevier Inc 01.06.2021
SAGE Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The innate immune response to cancer is initiated by cytosolic DNA, where it binds to cGAS and triggers type I interferon (IFN) expression via the STING receptor, leading to activation of tumor-specific T cells. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as the primary enzyme responsible for degrading cGAMP, and therefore it is under intense investigation as a therapeutic target for cancer immunotherapy. ENPP1 hydrolyzes cGAMP to produce AMP and GMP, and hydrolyzes ATP and other nucleotides to monophosphates and pyrophosphate. We developed a robust, high-throughput screening (HTS)-compatible enzymatic assay method for ENPP1 using the Transcreener AMP2/GMP2 Assay, a competitive fluorescence polarization (FP) immunoassay that enables direct detection of AMP and GMP in a homogenous format. The monoclonal antibody used in the Transcreener AMP2/GMP2 Assay showed more than 104-fold selectivity for AMP and GMP versus cGAMP, and 3000-fold selectivity for AMP over ATP, indicating that the assay can be used for detection at initial velocity with either substrate. A working concentration of 100 pM ENPP1 was determined as optimal with a 60 min reaction period, enabling screening with very low quantities of enzyme. A Z′ value of 0.72 was determined using ATP as substrate, indicating a high-quality assay. Consistent with previous studies, we found that ENPP1 preferred ATP as a substrate when compared with other nucleotides like GTP, ADP, and GDP. ENPP1 showed a 20-fold selectivity for 2′3′cGAMP compared with 2′3′c-diGMP and showed no activity with 3′3′c-diAMP. The Transcreener AMP2/GMP2 Assay should prove to be a valuable tool for the discovery of ENPP1 lead molecules.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2472-5552
2472-5560
DOI:10.1177/2472555220982321