Photocatalytic Properties of Silver Nanospherical Arrays Driven by Surface Plasmons

Surface-enhanced Raman scattering (SERS) is a promising technique to study the plasma-driven photocatalytic reactions. Hemispherical alumina nanoarrays with a regular hexagonal arrangement are firstly prepared; then, silver hemispherical nanoarrays are synthesized on the surface of the arrays by sil...

Full description

Saved in:
Bibliographic Details
Published inChemosensors Vol. 9; no. 12; p. 336
Main Authors Zhang, Lisheng, Wang, Xueyan, Zhang, Yiyuan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Surface-enhanced Raman scattering (SERS) is a promising technique to study the plasma-driven photocatalytic reactions. Hemispherical alumina nanoarrays with a regular hexagonal arrangement are firstly prepared; then, silver hemispherical nanoarrays are synthesized on the surface of the arrays by silver evaporation. When a laser with a specific wavelength (633 nm) is irradiated on the silver nanoarrays, a large number of regularly arranged local surface plasmon enhancement regions (called “hot spots”) would be generated on its surface. After that, a layer of evenly distributed p-aminothiophenol (PATP) probe molecules was placed on the substrate and the photocatalytic reaction of PATP was driven by the local surface plasmon to form four 4′-di-mercaptoazobenzene (DMAB). Then, under the same experimental conditions, the later product was reversely reacted to form PATP molecule by the action of plasma in the presence of in situ sodium borohydride. SERS can be used to monitor the whole process of the photocatalytic reaction of PATP probe molecules driven by the plasma on the surface of the silver nanoarrays. This research achieves the drawing and erasing of molecular graphics in the micro- and nano-scales, as well as information encryption, reading, and erasing that have strong application value.
ISSN:2227-9040
2227-9040
DOI:10.3390/chemosensors9120336