Influence of sources of dietary vitamin E on the maternal transfer of α-tocopherol to fetal and neonatal guinea pigs as determined by a stable isotopic technique

The accepted biological potencies of vitamin E (United States Phamacopeia, 1985) for 1 mg all-rac-α-tocopheryl acetate (synthetic form) is 1·00 IU and that of 1 mg (RRR)-α-tocopheryl acetate (natural form) is 1·36 IU. In the present study, a stable isotopic (2H) technique was employed to evaluate th...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of nutrition Vol. 89; no. 4; pp. 455 - 466
Main Authors Hidiroglou, N., Madere, R., McDowell, L. R., Toutain, P. L.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.04.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The accepted biological potencies of vitamin E (United States Phamacopeia, 1985) for 1 mg all-rac-α-tocopheryl acetate (synthetic form) is 1·00 IU and that of 1 mg (RRR)-α-tocopheryl acetate (natural form) is 1·36 IU. In the present study, a stable isotopic (2H) technique was employed to evaluate the bioavailability of natural v. synthetic forms of vitamin E and to determine whether the potency of the forms is the stated relationship of 1·36:1·00 (RRR)-α-tocopheryl acetate:all-rac-α-tocopheryl acetate. Sixty female in-bred guinea pigs received either 40 or 80 mg vitamin E/kg diet with equal levels of (RRR)-α-tocopheryl acetate and all-rac-α-tocopheryl acetate throughout gestation and lactation. At late-term pregnancy (day 50 or 60) and during early lactation, dams and their corresponding fetuses or neonates were killed and various tissues collected for subsequent α-tocopherol analysis. Vitamin E analysis of fetal and neonatal tissues indicated a substantial transfer of 2H-labelled α-tocopherol across the placenta and through the mammary gland. Total α-tocopherol concentrations were significantly influenced by tissue type and dose level, but not by stage of gestation or lactation. The relative bioavailability (d3:d6) across fetal and neonatal tissues was on average 1·81:1·00, with a range from 1·62:1·00 to 2·01:1·00. Maternal tissues had a mean ratio of 1·77:1·00. A higher relative bioavailability (P≤0·05) was observed with natural compared with synthetic α-tocopherol as shown by a higher d3:d6 ratio in all tissues examined. Vitamin E was highest in colostrum on day 2 then declined through to day 5. Results from this present experiment further question the accepted biological potencies of natural:synthetic α-tocopheryl acetate of 1·36:1·00.
Bibliography:istex:586EDBE5758EDEF298BF09DE91B9CA4B000E15CC
ark:/67375/6GQ-6TFX133T-T
PII:S0007114503000540
ArticleID:00054
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0007-1145
1475-2662
DOI:10.1079/BJN2002788