Visible-Light CDMA Communications Using Inverted Spread Sequences

Visible-light communication (VLC) using light-emitting diodes (LEDs) is gaining attention in the wireless communication field. LEDs can be used as data transmitters without losing their main functionality as lighting devices. In some VLC applications, such as traffic signs and road signals in intell...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 12; p. 1823
Main Authors Matsushima, Tomoko K., Yamasaki, Shoichiro, Ono, Kyohei, Tanaka, Hirokazu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 08.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Visible-light communication (VLC) using light-emitting diodes (LEDs) is gaining attention in the wireless communication field. LEDs can be used as data transmitters without losing their main functionality as lighting devices. In some VLC applications, such as traffic signs and road signals in intelligent transportation systems, high brightness is required to help people recognize the signs and signals conveyed by the light sources. In this paper, the use of inverted modified prime sequence codes (MPSCs) is shown to be efficient for increasing brightness in an optical code-division multiple access (CDMA) system for VLC, while the original MPSCs, namely non-inverted codes, provide much lower brightness. The average light intensity of a system using an inverted MPSC is several times the intensity of a system using an original MPSC, without losing the capabilities of channel multiplexing and multi-user interference canceling. Average light intensity and normalized fluctuation are investigated for the optical CDMA systems with the original and inverted MPSCs. The results show that the systems with the inverted MPSCs provide higher average light intensity and lower normalized fluctuation than the systems with the original MPSCs do. Moreover, the bit error rates of the systems with the inverted MPSCs are evaluated by computer simulation and compared with those of the systems with the original MPSCs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11121823