Visual analytics for spatiotemporal events

Crimes, forest fires, accidents, infectious diseases, or human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its geographic location, time and related attributes are known with high levels of detail (LoDs). The LoD plays a crucial role whe...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 78; no. 23; pp. 32805 - 32847
Main Authors Silva, Ricardo Almeida, Pires, João Moura, Datia, Nuno, Santos, Maribel Yasmina, Martins, Bruno, Birra, Fernando
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Crimes, forest fires, accidents, infectious diseases, or human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its geographic location, time and related attributes are known with high levels of detail (LoDs). The LoD plays a crucial role when analyzing data, as it can highlight useful patterns or insights and enhance the user’ perception of phenomena. For this reason, modeling phenomena at different LoDs is needed to increase the analytical value of the data, as there is no exclusive LOD at which the data can be analyzed. Current practices work mainly on a single LoD of the phenomena, driven by the analysts’ perception, ignoring that identifying the suitable LoDs is a key issue for pointing relevant patterns. This article presents a Visual Analytics approach called VAST , that allows users to simultaneously inspect a phenomenon at different LoDs, helping them to see in what LoDs do interesting patterns emerge, or in what LoDs the perception of the phenomenon is different. In this way, the analysis of vast amounts of spatiotemporal events is assisted, guiding the user in this process. The use of several synthetic and real datasets supported the evaluation and validation of VAST , suggesting LoDs with different interesting spatiotemporal patterns and pointing the type of expected patterns.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-019-08012-2