Evolution of multiple Martensite variants in a SMA thick-walled cylinder loaded by internal pressure

The stress and deformation fields in a SMA ring or a thick-walled cylinder loaded by internal pressure at constant temperature (over the start temperature of the martensitic transformation) are determined in closed form under plane stress loading conditions. The phenomenological SMA constitutive mod...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of solids and structures Vol. 155; pp. 15 - 35
Main Author Radi, Enrico
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.12.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The stress and deformation fields in a SMA ring or a thick-walled cylinder loaded by internal pressure at constant temperature (over the start temperature of the martensitic transformation) are determined in closed form under plane stress loading conditions. The phenomenological SMA constitutive model incorporates the volume fractions of multi-variants Martensite, which are assumed to evolve linearly with the Tresca effective stress, according to the associative flow rule and the corner flow rule. Initially, the cylinder is everywhere in a state of Austenite. The application of an internal pressure then triggers the martensitic transformation starting from the inner radius of the cylinder wall and extending towards the outer radius. If the wall thickness is large enough, the tangential stress may vanish at the inner radius and correspondingly the stress state may reach a corner of the Tresca transformation condition, thus originating two different Martensite variants according to the corner transformation rule. The admissible phase partitions within the wall thickness originating during the loading process have been systematically investigated according to the ratio between the outer and inner radii. The results obtained here suggest that the loading process should be interrupted soon after the complete martensitic transformation is achieved at the inner radius of the cylinder to avoid permanent plastic deformations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2018.06.034