Stability Analysis of a Sprayer UAV with a Liquid Tank with Different Outer Shapes and Inner Structures
The performance of sprayer UAVs largely depends on accurate trajectory control while spraying. A large amount of a liquid payload may create a sloshing effect inside the liquid tank, which may occur largely during hazardous phenomena, such as wind gusts and obstacle avoidance. This all-way sloshing...
Saved in:
Published in | Agriculture (Basel) Vol. 12; no. 3; p. 379 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The performance of sprayer UAVs largely depends on accurate trajectory control while spraying. A large amount of a liquid payload may create a sloshing effect inside the liquid tank, which may occur largely during hazardous phenomena, such as wind gusts and obstacle avoidance. This all-way sloshing force inside the tank may disturb the UAV’s trajectory by, for example, a displacement from the planned path or collision with an obstacle. A large number of existing sprayer UAVs already carry various-shaped tanks. A UAV’s liquid-sloshing problem must be reduced for existing and future plant protection. Applying suitable methods can achieve these goals and provide better performance. Moreover, various tank models have different structures and capabilities, which must be fixed using a flexible solution. This article proposes a simple baffle solution for all forms of pesticide tanks and compares baffle systems’ impacts using primary shaped tanks. Indoor lab experiments showed the extreme impacts inside the tanks. Outdoor UAV mission experiments provided the practical effectiveness of the tank structures, and primary shaped tank comparison results provided guidance for future UAV pesticide-tank manufacturing. A new baffle ball design is presented for a universal solution. A one-axis linear slider was used for optical observations, an open-source flight controller was used for on-field compliance, and plenty of tests were done to prove the concept and show the efficiency. The flat hexagonal tank and baffle ball system showed better results in both indoor and outdoor experiments. |
---|---|
ISSN: | 2077-0472 2077-0472 |
DOI: | 10.3390/agriculture12030379 |