Study of Supervisory Control Implementation in A Small Scale Variable Speed Wind Turbine

In relation to improve wind energy production, efforts to increase the extraction of wind energy should be done when there is a decrease in wind power. The decline occurs when there is a change in wind speed. At low wind speed operating range, such as in Indonesia, the controller optimizes power ext...

Full description

Saved in:
Bibliographic Details
Published inE3S Web of Conferences Vol. 43; p. 1023
Main Authors Indriawati, Katherin, Musyafa, Ali, Widjiantoro, Bambang L., Milatul Ummah, Anna
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In relation to improve wind energy production, efforts to increase the extraction of wind energy should be done when there is a decrease in wind power. The decline occurs when there is a change in wind speed. At low wind speed operating range, such as in Indonesia, the controller optimizes power extraction through wind turbine rotor regulation following optimal rotor speed. This study proposed the use of the PI control system as an intelligent control system to solve nonlinearity problem and the setpoint adjustment mechanism to get at the problem of the uncontrolled stochastic driving force input. The PI control is called as a regulatory control while setpoint adjustment is known as one mechanism in supervisory level. Thus, that control system is called as the supervisory control. This control had a task to maximize output power of a wind turbine. The technique was applied to a small scale horizontal axis wind turbine operating in wind speed range of 3-11 m/s. The applied optimization algorithm generated an optimum set-point simultaneously when there was a change of wind speed.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/20184301023