Microbial phytase improves performance, apparent metabolizable energy, and ileal amino acid digestibility of broilers fed a lysine-deficient diet

An experiment was conducted to examine the effects of adding microbial phytase (Natuphos) on the performance in broilers fed a phosphorus-adequate, lysine-deficient diet. A wheat-soybean meal-sorghum-based diet, containing 1.00% lysine and 0.45% nonphytate phosphorus, was supplemented with L-lysine...

Full description

Saved in:
Bibliographic Details
Published inPoultry science Vol. 80; no. 3; pp. 338 - 344
Main Authors Ravindran, V, Selle, P H, Ravindran, G, Morel PCH, Kies, A K, Bryden, W L
Format Journal Article
LanguageEnglish
Published England 01.03.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An experiment was conducted to examine the effects of adding microbial phytase (Natuphos) on the performance in broilers fed a phosphorus-adequate, lysine-deficient diet. A wheat-soybean meal-sorghum-based diet, containing 1.00% lysine and 0.45% nonphytate phosphorus, was supplemented with L-lysine monochloride to provide 1.06, 1.12, or 1.18% lysine or with 125, 250, 375, 500, 750, or 1,000 phytase units (FTU)/kg diet. Each diet was fed to six pens of 10 chicks each from Day 7 to 28 posthatching. Addition of lysine to the lysine-deficient diet linearly increased (P < 0.001) weight gain and gain per feed of broilers. The response in weight gain to added phytase reached a plateau at 500 FTU/kg diet (quadratic effect, P < 0.001). Phytase had no effect on gain per feed to 250 FTU/kg diet and then increased (quadratic effect, P < 0.05) with further additions. Assuming that the observed responses in weight gain and gain per feed to added phytase were due to the release of lysine alone and by solving linear or nonlinear response equations of lysine and phytase levels, the lysine equivalency value was calculated to be 500 FTU phytase/kg diet = 0.074% lysine. Addition of increasing levels of supplemental phytase to the lysine-deficient diet improved (P < 0.001) the digestibilities of nitrogen and all amino acids. Phytase also increased the AME, and the response reached a plateau at 750 FTU/kg diet (quadratic effect, P < 0.001). These results showed that amino acid and energy responses are responsible for the performance improvements observed when phytase was added to a wheat-soybean meal-sorghum-based diet.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-5791
DOI:10.1093/ps/80.3.338