Intrinsic role of bacterial secretion systems in phylogenetic niche conservation of Bradyrhizobium spp

Bradyrhizobium is a biologically important bacterial genus. Different Bradyrhizobium strains exhibit distinct niche selection like free living, root nodular and stem nodular. The present in-silico study was undertaken to identify the role of bacterial secretome in the phylogenetic niche conservation...

Full description

Saved in:
Bibliographic Details
Published inFEMS microbiology ecology Vol. 95; no. 11; p. 1
Main Authors Banerjee, Goutam, Basak, Swarnendu, Roy, Tathagato, Chattopadhyay, Pritam
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bradyrhizobium is a biologically important bacterial genus. Different Bradyrhizobium strains exhibit distinct niche selection like free living, root nodular and stem nodular. The present in-silico study was undertaken to identify the role of bacterial secretome in the phylogenetic niche conservation (PNC) of Bradyrhizobium sp. Analysis was carried out with the publicly available 19 complete genome assembly and annotation reports. A protocol was developed to screen the secretome related genes using three different database, viz. genome, proteome and gene ortholog. This resulted into 139 orthologs that include type secretion systems (T1SS-T6SS) along with flagella (Flg), type IV pili (T4P) and tight adherence (Tad) systems. Multivariate analysis using bacterial secretome was undertaken to find out the role of these secretion systems in PNC. In free living strains, T3SS, T4SS and T6SS were completely absent. Whereas, in the stem nodulating strains, T3SS and T6SS were absent, but T4SS was found to be present. On the other hand, the T3SS was found to be present only in the root-nodulating strains. The present investigation clearly demonstrated a pattern of PNC based on the distribution of secretion system components. To the best of our knowledge, this is the first report on PNC of Bradyrhizobium using the multivariate analysis of secretome.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0168-6496
1574-6941
DOI:10.1093/femsec/fiz165