The Role of Adipsin, Complement Factor D, in the Pathogenesis of Graves’ Orbitopathy

Graves' orbitopathy (GO) is an orbital manifestation of autoimmune Graves' disease, and orbital fibroblast is considered a target cell, producing pro-inflammatory cytokines and/or differentiating into adipocytes. Adipose tissue has been focused on as an endocrine and inflammatory organ sec...

Full description

Saved in:
Bibliographic Details
Published inInvestigative ophthalmology & visual science Vol. 64; no. 11; p. 13
Main Authors Byeon, Hyeong Ju, Chae, Min Kyung, Ko, JaeSang, Lee, Eun Jig, Kikkawa, Don O., Jang, Sun Young, Yoon, Jin Sook
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graves' orbitopathy (GO) is an orbital manifestation of autoimmune Graves' disease, and orbital fibroblast is considered a target cell, producing pro-inflammatory cytokines and/or differentiating into adipocytes. Adipose tissue has been focused on as an endocrine and inflammatory organ secreting adipokines. We investigated the pathogenic role of a specific adipokine, adipsin, known as complement factor D in Graves' orbital fibroblasts. The messenger RNA (mRNA) expression of multiple adipokines was investigated in adipose tissues harvested from GO and healthy subjects. Adipsin protein production was analyzed in primary cultured orbital fibroblasts under insulin growth factor (IGF)-1, CD40 ligand (CD40L) stimulation, and adipogenesis. The effect of blocking adipsin with small interfering RNA (siRNA) on pro-inflammatory cytokine production and adipogenesis was evaluated using quantitative real-time PCR, Western blot, and ELISA. Adipogenic differentiation was identified using Oil Red O staining. Adipsin gene expression was significantly elevated in GO tissue and increased after the stimulation of IGF-1 and CD40L, as well as adipocyte differentiation in GO cells. Silencing of adipsin suppressed IGF-1-induced IL-6, IL-8, COX2, ICAM-1, CCL2 gene expression, and IL-6 protein secretion. Adipsin suppression also attenuated adipocyte differentiation. Exogenous treatment of recombinant adipsin resulted in the activation of the Akt, ERK, p-38, and JNK signaling pathways. Adipsin, secreted by orbital fibroblasts, may play a distinct role in the pathogenesis of GO. Inhibition of adipsin ameliorated the production of pro-inflammatory cytokines and adipogenesis in orbital fibroblasts. Our study provides an in vitro basis suggesting adipsin as a potential therapeutic target for GO treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.64.11.13