Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems
The majority of Combinatorial Optimization Problems (COPs) are defined in the discrete space. Hence, proposing an efficient algorithm to solve the problems has become an attractive subject in recent years. In this paper, a meta-heuristic algorithm based on Binary Particle Swarm Algorithm (BPSO) and...
Saved in:
Published in | Journal of global optimization Vol. 57; no. 2; pp. 549 - 573 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.10.2013
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The majority of Combinatorial Optimization Problems (COPs) are defined in the discrete space. Hence, proposing an efficient algorithm to solve the problems has become an attractive subject in recent years. In this paper, a meta-heuristic algorithm based on Binary Particle Swarm Algorithm (BPSO) and the governing Newtonian motion laws, so-called Binary Accelerated Particle Swarm Algorithm (BAPSA) is offered for discrete search spaces. The method is presented in two global and local topologies and evaluated on the 0–1 Multidimensional Knapsack Problem (MKP) as a famous problem in the class of COPs and NP-hard problems. Besides, the results are compared with BPSO for both global and local topologies as well as Genetic Algorithm (GA). We applied three methods of Penalty Function (PF) technique, Check-and-Drop (CD) and Improved Check-and-Repair Operator (ICRO) algorithms to solve the problem of infeasible solutions in the 0–1 MKP. Experimental results show that the proposed methods have better performance than BPSO and GA especially when ICRO algorithm is applied to convert infeasible solutions to feasible ones. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-012-0006-1 |