Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems

The majority of Combinatorial Optimization Problems (COPs) are defined in the discrete space. Hence, proposing an efficient algorithm to solve the problems has become an attractive subject in recent years. In this paper, a meta-heuristic algorithm based on Binary Particle Swarm Algorithm (BPSO) and...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 57; no. 2; pp. 549 - 573
Main Authors Beheshti, Zahra, Shamsuddin, Siti Mariyam, Yuhaniz, Siti Sophiayati
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.10.2013
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The majority of Combinatorial Optimization Problems (COPs) are defined in the discrete space. Hence, proposing an efficient algorithm to solve the problems has become an attractive subject in recent years. In this paper, a meta-heuristic algorithm based on Binary Particle Swarm Algorithm (BPSO) and the governing Newtonian motion laws, so-called Binary Accelerated Particle Swarm Algorithm (BAPSA) is offered for discrete search spaces. The method is presented in two global and local topologies and evaluated on the 0–1 Multidimensional Knapsack Problem (MKP) as a famous problem in the class of COPs and NP-hard problems. Besides, the results are compared with BPSO for both global and local topologies as well as Genetic Algorithm (GA). We applied three methods of Penalty Function (PF) technique, Check-and-Drop (CD) and Improved Check-and-Repair Operator (ICRO) algorithms to solve the problem of infeasible solutions in the 0–1 MKP. Experimental results show that the proposed methods have better performance than BPSO and GA especially when ICRO algorithm is applied to convert infeasible solutions to feasible ones.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-012-0006-1