Activation of the cAMP/PKA pathway induces UT-A1 urea transporter monoubiquitination and targets it for lysosomal degradation

Regulation of urea transporter UT-A1 in the kidney is important for the urinary concentrating mechanism. We previously reported that activation of the cAMP/PKA pathway by forskolin (FSK) leads to UT-A1 ubiquitination, endocytosis, and degradation. In this study, we discovered that FSK-induced UT-A1...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Renal physiology Vol. 305; no. 12; pp. F1775 - F1782
Main Authors Su, Hua, Chen, Minguang, Sands, Jeff M., Chen, Guangping
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 15.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Regulation of urea transporter UT-A1 in the kidney is important for the urinary concentrating mechanism. We previously reported that activation of the cAMP/PKA pathway by forskolin (FSK) leads to UT-A1 ubiquitination, endocytosis, and degradation. In this study, we discovered that FSK-induced UT-A1 ubiquitination is monoubiquitination as judged by immunoblotting with specific ubiquitin antibodies to the different linkages of the ubiquitin chain. UT-A1 monoubiquitination induced by FSK was processed mainly on the cell plasma membrane. Monoubiquitination facilitates UT-A1 endocytosis, and internalized UT-A1 is accumulated in the early endosome. Inhibition of ubiquitination by E1 ubiquitin-activating enzyme inhibitor PYR-41 significantly reduced FSK-induced UT-A1 endocytosis and degradation. Interestingly, FSK-stimulated UT-A1 degradation occurs through a lysosomal protein degradation system. We further found that the PKA phosphorylation sites of UT-A1 at Ser486 and Ser499 are required for FSK-induced UT-A1 monoubiquitination. The physiological significance was confirmed using rat kidney inner medullary collecting duct suspensions, which showed that vasopressin treatment promotes UT-A1 ubiquitination. We conclude that unlike under basal conditions in which UT-A1 is subject to polyubiquitination and proteasome-mediated protein degradation, activation of UT-A1 by FSK induces UT-A1 monoubiquitination and protein lysosomal degradation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1931-857X
1522-1466
1522-1466
DOI:10.1152/ajprenal.00393.2013