Feasibility of a sub‐3‐minute imaging strategy for ungated quiescent interval slice‐selective MRA of the extracranial carotid arteries using radial k‐space sampling and deep learning–based image processing

Purpose To develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice‐selective (QISS) MRA, combining single‐shot radial sampling with deep neural network–based image processing to optimi...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 84; no. 2; pp. 825 - 837
Main Authors Koktzoglou, Ioannis, Huang, Rong, Ong, Archie L., Aouad, Pascale J., Aherne, Emily A., Edelman, Robert R.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.08.2020
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.28179

Cover

Abstract Purpose To develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice‐selective (QISS) MRA, combining single‐shot radial sampling with deep neural network–based image processing to optimize image quality. Methods The extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k‐space sampling, single‐shot and multishot image acquisition (1.1‐3.3 seconds/slice, 141‐423 seconds/volume), and deep learning–based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial‐to‐background contrast and apparent contrast‐to‐noise ratio, and structural similarity index. Comparison of deep learning–based image processing was made with block matching and 3D filtering denoising. Results Compared with Cartesian sampling, radial k‐space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1‐shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1‐shot and much lengthier 3‐shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning–based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial‐to‐background contrast (P < .001) and apparent contrast‐to‐noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001). Conclusion Rapid, sub‐3‐minute evaluation of the extracranial carotid arteries is feasible with ungated single‐shot radial QISS, and benefits from the use of deep learning–based image processing to enhance source image quality.
AbstractList To develop and test the feasibility of a sub-3-minute imaging strategy for non-contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice-selective (QISS) MRA, combining single-shot radial sampling with deep neural network-based image processing to optimize image quality.PURPOSETo develop and test the feasibility of a sub-3-minute imaging strategy for non-contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice-selective (QISS) MRA, combining single-shot radial sampling with deep neural network-based image processing to optimize image quality.The extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k-space sampling, single-shot and multishot image acquisition (1.1-3.3 seconds/slice, 141-423 seconds/volume), and deep learning-based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial-to-background contrast and apparent contrast-to-noise ratio, and structural similarity index. Comparison of deep learning-based image processing was made with block matching and 3D filtering denoising.METHODSThe extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k-space sampling, single-shot and multishot image acquisition (1.1-3.3 seconds/slice, 141-423 seconds/volume), and deep learning-based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial-to-background contrast and apparent contrast-to-noise ratio, and structural similarity index. Comparison of deep learning-based image processing was made with block matching and 3D filtering denoising.Compared with Cartesian sampling, radial k-space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1-shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1-shot and much lengthier 3-shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning-based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial-to-background contrast (P < .001) and apparent contrast-to-noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001).RESULTSCompared with Cartesian sampling, radial k-space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1-shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1-shot and much lengthier 3-shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning-based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial-to-background contrast (P < .001) and apparent contrast-to-noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001).Rapid, sub-3-minute evaluation of the extracranial carotid arteries is feasible with ungated single-shot radial QISS, and benefits from the use of deep learning-based image processing to enhance source image quality.CONCLUSIONRapid, sub-3-minute evaluation of the extracranial carotid arteries is feasible with ungated single-shot radial QISS, and benefits from the use of deep learning-based image processing to enhance source image quality.
PurposeTo develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice‐selective (QISS) MRA, combining single‐shot radial sampling with deep neural network–based image processing to optimize image quality.MethodsThe extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k‐space sampling, single‐shot and multishot image acquisition (1.1‐3.3 seconds/slice, 141‐423 seconds/volume), and deep learning–based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial‐to‐background contrast and apparent contrast‐to‐noise ratio, and structural similarity index. Comparison of deep learning–based image processing was made with block matching and 3D filtering denoising.ResultsCompared with Cartesian sampling, radial k‐space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1‐shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1‐shot and much lengthier 3‐shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning–based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial‐to‐background contrast (P < .001) and apparent contrast‐to‐noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001).ConclusionRapid, sub‐3‐minute evaluation of the extracranial carotid arteries is feasible with ungated single‐shot radial QISS, and benefits from the use of deep learning–based image processing to enhance source image quality.
To develop and test the feasibility of a sub-3-minute imaging strategy for non-contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice-selective (QISS) MRA, combining single-shot radial sampling with deep neural network-based image processing to optimize image quality. The extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k-space sampling, single-shot and multishot image acquisition (1.1-3.3 seconds/slice, 141-423 seconds/volume), and deep learning-based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial-to-background contrast and apparent contrast-to-noise ratio, and structural similarity index. Comparison of deep learning-based image processing was made with block matching and 3D filtering denoising. Compared with Cartesian sampling, radial k-space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1-shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1-shot and much lengthier 3-shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning-based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial-to-background contrast (P < .001) and apparent contrast-to-noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001). Rapid, sub-3-minute evaluation of the extracranial carotid arteries is feasible with ungated single-shot radial QISS, and benefits from the use of deep learning-based image processing to enhance source image quality.
Purpose To develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice‐selective (QISS) MRA, combining single‐shot radial sampling with deep neural network–based image processing to optimize image quality. Methods The extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k‐space sampling, single‐shot and multishot image acquisition (1.1‐3.3 seconds/slice, 141‐423 seconds/volume), and deep learning–based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial‐to‐background contrast and apparent contrast‐to‐noise ratio, and structural similarity index. Comparison of deep learning–based image processing was made with block matching and 3D filtering denoising. Results Compared with Cartesian sampling, radial k‐space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1‐shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1‐shot and much lengthier 3‐shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning–based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial‐to‐background contrast (P < .001) and apparent contrast‐to‐noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001). Conclusion Rapid, sub‐3‐minute evaluation of the extracranial carotid arteries is feasible with ungated single‐shot radial QISS, and benefits from the use of deep learning–based image processing to enhance source image quality.
Author Koktzoglou, Ioannis
Huang, Rong
Edelman, Robert R.
Ong, Archie L.
Aouad, Pascale J.
Aherne, Emily A.
Author_xml – sequence: 1
  givenname: Ioannis
  orcidid: 0000-0001-9335-2010
  surname: Koktzoglou
  fullname: Koktzoglou, Ioannis
  email: ikoktzoglou@gmail.com
  organization: Pritzker School of Medicine, University of Chicago
– sequence: 2
  givenname: Rong
  surname: Huang
  fullname: Huang, Rong
  organization: NorthShore University HealthSystem
– sequence: 3
  givenname: Archie L.
  surname: Ong
  fullname: Ong, Archie L.
  organization: NorthShore University HealthSystem
– sequence: 4
  givenname: Pascale J.
  surname: Aouad
  fullname: Aouad, Pascale J.
  organization: Northwestern University Feinberg School of Medicine
– sequence: 5
  givenname: Emily A.
  surname: Aherne
  fullname: Aherne, Emily A.
  organization: Northwestern University Feinberg School of Medicine
– sequence: 6
  givenname: Robert R.
  orcidid: 0000-0002-0013-8822
  surname: Edelman
  fullname: Edelman, Robert R.
  organization: Northwestern University Feinberg School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31975432$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9u1DAQxi1URLeFAy-ALHGBQ1r_yyY-VhUFpK6QKjhbjj1ZXBxnazuFvfURkHg47n0SHHZ7qeBgWR7_vm_G4zlCB2EMgNBLSk4oIex0iMMJa2kjn6AFrRmrWC3FAVqQRpCKUykO0VFK14QQKRvxDB2WWFMLzhbo9wXo5DrnXd7isccap6m7v_vJyxpcmDJgN-i1C2ucctQZ1lvcjxFPYV0OFt9MDpKBkLELGeKt9jh5Z6DIE3gw2d0CXl2dzd75K2D4UVxM1MEV0ug4ZmexjkVafPCU5kRR2_n22-yx0QZw0sPGzzc6WGwBNtiDjqFE7u9-dTqVOuYiAW_iaCDNJs_R0177BC_2-zH6cvHu8_mH6vLT-4_nZ5eV4W0rqxoY15aajnBat71oOG0baUHK2pi27uaG2Zq2lveCayDasL4hVtNl3zBCGT9Gb3a-JfXNBCmrwZV-eK8DjFNSjAvBlstlIwv6-hF6PU4xlOoKJZkUTAhaqFd7auoGsGoTy9PiVj18WQFOd4CJY0oRemVc1tmNoXTWeUWJmodClaFQf4eiKN4-UjyY_ovdu393Hrb_B9XqarVT_AHuQc80
CitedBy_id crossref_primary_10_1016_j_atherosclerosis_2022_06_1014
crossref_primary_10_1016_j_semcancer_2023_07_002
crossref_primary_10_1016_j_mri_2024_04_009
crossref_primary_10_1109_JPROC_2022_3141367
crossref_primary_10_1016_j_mric_2023_04_001
crossref_primary_10_1007_s00256_021_03751_6
crossref_primary_10_1016_j_cmpb_2023_107871
crossref_primary_10_1016_j_mri_2021_09_001
crossref_primary_10_1002_mrm_28339
crossref_primary_10_1016_j_nic_2020_04_004
crossref_primary_10_1186_s41747_025_00560_7
crossref_primary_10_1007_s00062_024_01458_4
crossref_primary_10_1155_2021_1197728
crossref_primary_10_1002_mrm_28738
crossref_primary_10_3389_fcvm_2023_1284743
Cites_doi 10.1148/radiol.13131669
10.1148/radiology.173.2.2798885
10.1109/MSP.2017.2760358
10.1148/radiol.2015142690
10.1109/TIP.2003.819861
10.1016/j.zemedi.2018.11.002
10.1002/jmri.23515
10.1007/s00330-013-2931-x
10.1148/radiol.2423061640
10.1109/TIP.2007.901238
10.1038/sj.ki.5000368
10.1002/mrm.22287
10.1186/s12968-016-0238-1
10.1002/mrm.25477
10.1007/s00330-011-2110-x
10.2214/ajr.178.3.1780543
10.1002/mrm.20636
10.1148/radiol.2312030451
10.1002/jmri.24640
10.1002/mrm.25791
10.1186/s12968-015-0205-2
10.1177/1941874411418523
10.3174/ajnr.A1179
10.1002/mrm.26881
10.1159/000341410
10.2214/ajr.163.5.7976902
10.1002/jmri.26781
10.1002/jmri.22628
10.1002/mrm.26715
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28179
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 837
ExternalDocumentID 31975432
10_1002_mrm_28179
MRM28179
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: R01 EB027475
– fundername: NIBIB NIH HHS
  grantid: R01 EB027475
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3889-5e23ad1cb03158f4731879de995cc85b0997d518d3f43ae0ac2f70da16f720123
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 08:17:50 EDT 2025
Fri Jul 25 12:20:34 EDT 2025
Mon Jul 21 05:59:28 EDT 2025
Tue Jul 01 01:21:10 EDT 2025
Thu Apr 24 23:05:03 EDT 2025
Wed Jan 22 16:34:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
radial
MRA
QISS
carotid
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3889-5e23ad1cb03158f4731879de995cc85b0997d518d3f43ae0ac2f70da16f720123
Notes Funding information
National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health; Grant/Award Number R01EB027475
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9335-2010
0000-0002-0013-8822
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7180090
PMID 31975432
PQID 2392942441
PQPubID 1016391
PageCount 13
ParticipantIDs proquest_miscellaneous_2344266679
proquest_journals_2392942441
pubmed_primary_31975432
crossref_citationtrail_10_1002_mrm_28179
crossref_primary_10_1002_mrm_28179
wiley_primary_10_1002_mrm_28179_MRM28179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 17
2011; 1
2019; 50
2013; 23
2013; 40
2007; 242
2002; 178
2016; 75
2006
2011; 34
2014; 270
2005; 26
2016; 18
2012; 35
2010; 63
2007; 16
2007; 28
2004; 231
2019; 40
1989; 10
1994; 163
2008; 29
2015; 276
2015; 41
2004; 13
1989; 173
2011; 21
2019; 29
2005; 54
2015
2014; 72
2018; 35
2018; 79
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Peters S (e_1_2_8_23_1) 2019; 40
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Lell M (e_1_2_8_35_1) 2007; 28
Wagle WA (e_1_2_8_12_1) 1989; 10
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
Ronneberger O (e_1_2_8_27_1) 2015
e_1_2_8_34_1
e_1_2_8_33_1
Yang CW (e_1_2_8_6_1) 2005; 26
e_1_2_8_30_1
References_xml – volume: 21
  start-page: 1667
  year: 2011
  end-page: 1676
  article-title: Magnetic resonance angiography of the carotid arteries: comparison of unenhanced and contrast enhanced techniques
  publication-title: Eur Radiol
– volume: 23
  start-page: 3020
  year: 2013
  end-page: 3028
  article-title: Non‐ECG‐gated unenhanced MRA of the carotids: optimization and clinical feasibility
  publication-title: Eur Radiol
– volume: 79
  start-page: 2077
  year: 2018
  end-page: 2086
  article-title: Radial fast interrupted steady‐state (FISS) magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 75
  start-page: 2072
  year: 2016
  end-page: 2077
  article-title: Quiescent interval low angle shot magnetic resonance angiography of the extracranial carotid arteries
  publication-title: Magn Reson Med
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 40
  start-page: 36
  year: 2013
  end-page: 41
  article-title: Carotid artery stenosis as a cause of stroke
  publication-title: Neuroepidemiology
– volume: 50
  start-page: 1798
  year: 2019
  end-page: 1807
  article-title: Ungated nonenhanced radial quiescent interval slice‐selective (QISS) magnetic resonance angiography of the neck: evaluation of image quality
  publication-title: J Magn Reson Imaging
– volume: 72
  start-page: 1522
  year: 2014
  end-page: 1529
  article-title: Ungated radial quiescent‐inflow single‐shot (UnQISS) magnetic resonance angiography using optimized azimuthal equidistant projections
  publication-title: Magn Reson Med
– volume: 29
  start-page: 102
  year: 2019
  end-page: 127
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Z Med Phys
– volume: 1
  start-page: 187
  year: 2011
  end-page: 199
  article-title: Computed tomography angiography in the assessment of patients with stroke/TIA
  publication-title: Neurohospitalist
– volume: 26
  start-page: 2095
  year: 2005
  end-page: 2101
  article-title: Contrast‐enhanced MR angiography of the carotid and vertebrobasilar circulations
  publication-title: AJNR Am J Neuroradiol
– volume: 41
  start-page: 1150
  year: 2015
  end-page: 1156
  article-title: Nonenhanced arterial spin labeled carotid MR angiography using three‐dimensional radial balanced steady‐state free precession imaging
  publication-title: J Magn Reson Imaging
– volume: 270
  start-page: 834
  year: 2014
  end-page: 841
  article-title: High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1‐weighted MR images: relationship with increasing cumulative dose of a gadolinium‐based contrast material
  publication-title: Radiology
– year: 2015
  article-title: U‐net: convolutional networks for biomedical image segmentation
  publication-title: IEEE Comp Vis Pattern Recog
– start-page: S11
  year: 2006
  end-page: S15
  article-title: Contrast‐induced nephropathy: definition, epidemiology, and patients at risk
  publication-title: Kidney Int Suppl
– volume: 29
  start-page: 1736
  year: 2008
  end-page: s1742
  article-title: MR imaging: influence of imaging technique and postprocessing on measurement of internal carotid artery stenosis
  publication-title: Am J Neuroradiol
– volume: 28
  start-page: 104
  year: 2007
  end-page: 110
  article-title: Evaluation of carotid artery stenosis with multisection CT and MR imaging: influence of imaging modality and postprocessing
  publication-title: Am J Neuroradiol
– volume: 18
  start-page: 18
  year: 2016
  article-title: Nonenhanced hybridized arterial spin labeled magnetic resonance angiography of the extracranial carotid arteries using a fast low angle shot readout at 3 Tesla
  publication-title: J Cardiovasc Magn Reson
– volume: 35
  start-page: 20
  year: 2018
  end-page: 36
  article-title: Using deep neural networks for inverse problems in imaging: beyond analytical methods
  publication-title: IEEE Signal Process Mag
– volume: 54
  start-page: 748
  year: 2005
  end-page: 754
  article-title: Practical approaches to the evaluation of signal‐to‐noise ratio performance with parallel imaging: application with cardiac imaging and a 32‐channel cardiac coil
  publication-title: Magn Reson Med
– volume: 40
  start-page: 1529
  year: 2019
  end-page: 1537
  article-title: Non‐contrast‐enhanced carotid MRA: clinical evaluation of a novel ungated radial quiescent‐interval slice‐selective MRA at 1.5T
  publication-title: Am J Neuroradiol
– volume: 242
  start-page: 647
  year: 2007
  end-page: 649
  article-title: Gadolinium‐based MR contrast agents and nephrogenic systemic fibrosis
  publication-title: Radiology
– volume: 17
  start-page: 101
  year: 2015
  article-title: Breath‐hold imaging of the coronary arteries using Quiescent‐Interval Slice‐Selective (QISS) magnetic resonance angiography: pilot study at 1.5 Tesla and 3 Tesla
  publication-title: J Cardiovasc Magn Reson
– volume: 63
  start-page: 951
  year: 2010
  end-page: 958
  article-title: Quiescent‐interval single‐shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility
  publication-title: Magn Reson Med
– volume: 173
  start-page: 527
  year: 1989
  end-page: 532
  article-title: MR angiography with two‐dimensional acquisition and three‐dimensional display. Work in progress
  publication-title: Radiology
– volume: 79
  start-page: 683
  year: 2018
  end-page: 691
  article-title: Super‐resolution intracranial quiescent interval slice‐selective magnetic resonance angiography
  publication-title: Magn Reson Med
– volume: 276
  start-page: 228
  year: 2015
  end-page: 232
  article-title: Gadolinium‐based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy
  publication-title: Radiology
– volume: 10
  start-page: 911
  year: 1989
  end-page: 919
  article-title: 3DFT MR angiography of carotid and basilar arteries
  publication-title: AJNR Am J Neuroradiol
– volume: 231
  start-page: 581
  year: 2004
  end-page: 586
  article-title: Free‐breathing 3D steady‐state free precession coronary MR angiography with radial k‐space sampling: comparison with cartesian k‐space sampling and Cartesian gradient‐echo coronary MR angiography—pilot study
  publication-title: Radiology
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  article-title: Image denoising by Ssparse 3‐D transform‐domain collaborative filtering
  publication-title: IEEE Trans Image Process
– volume: 163
  start-page: 1205
  year: 1994
  end-page: 1212
  article-title: Prospective evaluation of extracranial carotid stenosis: MR angiography with maximum‐intensity projections and multiplanar reformation compared with conventional angiography
  publication-title: AJR Am J Roentgenol
– volume: 34
  start-page: 384
  year: 2011
  end-page: 394
  article-title: Nonenhanced extracranial carotid MR angiography using arterial spin labeling: improved performance with pseudocontinuous tagging
  publication-title: J Magn Reson Imaging
– volume: 35
  start-page: 957
  year: 2012
  end-page: 962
  article-title: Noncontrast MR angiography for supraaortic arteries using inflow enhanced inversion recovery fast spin echo imaging
  publication-title: J Magn Reson Imaging
– volume: 178
  start-page: 543
  year: 2002
  end-page: 549
  article-title: High‐resolution breath‐hold contrast‐enhanced MR angiography of the entire carotid circulation
  publication-title: AJR Am J Roentgenol
– ident: e_1_2_8_8_1
  doi: 10.1148/radiol.13131669
– ident: e_1_2_8_11_1
  doi: 10.1148/radiology.173.2.2798885
– ident: e_1_2_8_24_1
  doi: 10.1109/MSP.2017.2760358
– ident: e_1_2_8_9_1
  doi: 10.1148/radiol.2015142690
– volume: 28
  start-page: 104
  year: 2007
  ident: e_1_2_8_35_1
  article-title: Evaluation of carotid artery stenosis with multisection CT and MR imaging: influence of imaging modality and postprocessing
  publication-title: Am J Neuroradiol
– ident: e_1_2_8_29_1
  doi: 10.1109/TIP.2003.819861
– year: 2015
  ident: e_1_2_8_27_1
  article-title: U‐net: convolutional networks for biomedical image segmentation
  publication-title: IEEE Comp Vis Pattern Recog
– ident: e_1_2_8_25_1
  doi: 10.1016/j.zemedi.2018.11.002
– ident: e_1_2_8_16_1
  doi: 10.1002/jmri.23515
– ident: e_1_2_8_17_1
  doi: 10.1007/s00330-013-2931-x
– ident: e_1_2_8_10_1
  doi: 10.1148/radiol.2423061640
– ident: e_1_2_8_28_1
  doi: 10.1109/TIP.2007.901238
– ident: e_1_2_8_7_1
  doi: 10.1038/sj.ki.5000368
– volume: 10
  start-page: 911
  year: 1989
  ident: e_1_2_8_12_1
  article-title: 3DFT MR angiography of carotid and basilar arteries
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_20_1
  doi: 10.1002/mrm.22287
– ident: e_1_2_8_19_1
  doi: 10.1186/s12968-016-0238-1
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.25477
– ident: e_1_2_8_2_1
– ident: e_1_2_8_14_1
  doi: 10.1007/s00330-011-2110-x
– ident: e_1_2_8_5_1
  doi: 10.2214/ajr.178.3.1780543
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.20636
– ident: e_1_2_8_30_1
  doi: 10.1148/radiol.2312030451
– ident: e_1_2_8_18_1
  doi: 10.1002/jmri.24640
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.25791
– ident: e_1_2_8_32_1
  doi: 10.1186/s12968-015-0205-2
– ident: e_1_2_8_4_1
  doi: 10.1177/1941874411418523
– ident: e_1_2_8_36_1
  doi: 10.3174/ajnr.A1179
– ident: e_1_2_8_34_1
  doi: 10.1002/mrm.26881
– ident: e_1_2_8_3_1
  doi: 10.1159/000341410
– volume: 40
  start-page: 1529
  year: 2019
  ident: e_1_2_8_23_1
  article-title: Non‐contrast‐enhanced carotid MRA: clinical evaluation of a novel ungated radial quiescent‐interval slice‐selective MRA at 1.5T
  publication-title: Am J Neuroradiol
– ident: e_1_2_8_13_1
  doi: 10.2214/ajr.163.5.7976902
– ident: e_1_2_8_22_1
  doi: 10.1002/jmri.26781
– volume: 26
  start-page: 2095
  year: 2005
  ident: e_1_2_8_6_1
  article-title: Contrast‐enhanced MR angiography of the carotid and vertebrobasilar circulations
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_15_1
  doi: 10.1002/jmri.22628
– ident: e_1_2_8_33_1
  doi: 10.1002/mrm.26715
SSID ssj0009974
Score 2.4194605
Snippet Purpose To develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated...
To develop and test the feasibility of a sub-3-minute imaging strategy for non-contrast evaluation of the extracranial carotid arteries using ungated quiescent...
PurposeTo develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 825
SubjectTerms Arteries
Artificial neural networks
Background noise
carotid
Carotid arteries
Carotid Arteries - diagnostic imaging
Carotid artery
Cartesian coordinates
Deep Learning
Feasibility
Feasibility Studies
Filtration
Humans
Image acquisition
Image contrast
Image enhancement
Image Interpretation, Computer-Assisted
Image processing
Image quality
Information processing
Machine learning
Magnetic Resonance Angiography
Matching
MRA
Neural networks
Noise reduction
Protocol (computers)
QISS
Quality
radial
Sampling
Shot
Similarity
Veins & arteries
Title Feasibility of a sub‐3‐minute imaging strategy for ungated quiescent interval slice‐selective MRA of the extracranial carotid arteries using radial k‐space sampling and deep learning–based image processing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28179
https://www.ncbi.nlm.nih.gov/pubmed/31975432
https://www.proquest.com/docview/2392942441
https://www.proquest.com/docview/2344266679
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBUh0NJNH-lr2rTcli668WQsW_aYrkLbEAruYmggi4KR9QgmGc90bC_SVT6h0I_rPl_SeyXbIX1A6WJgBsmSBt3HsX10LmOvZFjKLA1toBHMB3FiTJCZqAyE4EJaLU2m6KBw_jE5PIo_HIvjLfZmOAvj9SHGB27kGS5ek4PLstm7Eg1dbpZTPkd7wvgbRgnp5r9bXElHZZlXYE5jijNZPKgKzfjeeOX1XPQbwLyOV13CObjDPg9L9TyT02nXllP19RcVx__8L3fZ7R6Iwr63nHtsy9Q77Gbev2rfYTccN1Q199kPhIk9ifYcVhYkNF15efEtws-yqrvWQLV0xY6g8Vq354BQGDCM4A8NX7rKa0ZB5QiWOCuCW2Xw8sZV4cGAC_lin8ZGOAqYLjZSYQ5F1wAqK9RWGhz1FMcBIuqfwIYkFc7glMbAu34DjSRqPLbIWoM2Zg19PYyTy4vvlKq1W6SBtT8ZgQ0P2NHB-09vD4O-HkSgIiJjCcMjqUNVUmWKuY3TiEqla5NlQqm5KGnPtQjnOrJxJM1MKm7TmZZhYlNO2PEh265XtXnMQKbWhmVilBVJPFMcTTZDZFgmWSol3tFN2OvBMgrVi6VTzY6zwss88wK3rHBbNmEvx65rrxDyp067g3kVfZBoCk7YlA4ahhP2YmxG96Z3NrI2q476xIShEhrikTfLcRY061TEEcfFOuP6-_RFvsjdlyf_3vUpu8Xp2YIjO-6y7XbTmWcIwNryufO0nxe_Nho
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKEcuFpWwDBR6IA5dMJ842lrhUQDVA08OolXpBkWM71aidzDBJDuXUn4DEj-PeX8J7dpKqLBLiECmRHduR3_LZef4eY6-kn0uR-IWnEcx7YWyMJ0yQe1HEI1loaYSig8LpXjw5CD8eRodr7E13FsbxQ_QbbqQZ1l6TgtOG9NYFa-h8NR_yMQrUFXY1RKBBS6930wvyKCEcB3MSkqURYccrNOJb_auXvdFvEPMyYrUuZ-c2-9wN1kWaHA-bOh-qr7_wOP7v19xht1osCttOeO6yNVNusOtp-7d9g12z4aGqusd-IFJs42hPYVGAhKrJz8--BXjNZ2VTG5jNbb4jqBzd7SkgGga0JPig4Uszc7RRMLMxltgr4ltl8PXKJuJBmwvpdJvaRkQK6DFWUqEbRe0AyixUzzTY6FNsByhW_whWxKpwAsfUBi78DVSSouOxRJYatDFLaFNiHJ2ffSdvre0gDSzd4QgsuM8Odt7vv514bUoITwUUjxUZHkjtq5ySU4yLMAkoW7o2QkRKjaOcJl1H_lgHRRhIM5KKF8lISz8uEk7w8QFbLxelecRAJkXh57FRRRSHI8VRagWCwzwWiZS4qBuw151oZKrlS6e0HSeZY3rmGU5ZZqdswF72VZeOJORPlTY7-cpaO1FlnOApnTX0B-xFX4waTr9tZGkWDdUJCUbF1MRDJ5d9LyjXSRQGHAdrpevv3WfpNLU3j_-96nN2Y7Kf7ma7H_Y-PWE3OW012NjHTbZerxrzFPFYnT-zavcTQz06OQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6VIiouLIVCoMADceDiNB5vGXGqgKgsqVBEpR6QrPEsldXGCbF9KKf-BCR-HPf-Et4bL1VZJMQhUqIZz0w0b_lsf_M9xp5LP5Mi8a2nEcx7YWyMJ0yQeVHEI2m1NELRQeHpfrx3EL47jA7X2MvuLEyjD9E_cCPPcPGaHHyp7c6FaOh8NR_yMdrTFXY1jBFJECKaXWhHCdFIMCchBRoRdrJCI77TX3o5Gf2GMC8DVpdxJjfZ526tDdHkeFhX2VB9_UXG8T__zC12o0WisNuYzm22ZopNtjFt37VvsmuOHKrKO-wH4sSWRXsKCwsSyjo7P_sW4GeeF3VlIJ-7akdQNmK3p4BYGDCO4A8NX-q8EY2C3DEscVZEt8rg5aUrw4MRF6azXRob8ShgvlhJhUkUfQOorlCVa3DcUxwHiKl_BCvSVDiBYxoDb_sNlJK48dgiCw3amCW0BTGOzs--U67WbpEGls3RCGy4yw4mbz692vPaghCeCoiNFRkeSO2rjEpTjG2YBFQrXRshIqXGUUZ7riN_rAMbBtKMpOI2GWnpxzbhBB632HqxKMx9BjKx1s9io2wUhyPF0WYFQsMsFomUeEs3YC86y0hVq5ZORTtO0kbnmae4ZanbsgF71nddNhIhf-q03ZlX2kaJMuUETumkoT9gT_tm9G96aSMLs6ipT0ggKqYh7jVm2c-CZp1EYcBxsc64_j59Op1N3ZcH_971Cdv4-HqSfni7__4hu87pOYMjPm6z9WpVm0cIxqrssXO6n4NKOOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+a+sub-3-minute+imaging+strategy+for+ungated+quiescent+interval+slice-selective+MRA+of+the+extracranial+carotid+arteries+using+radial+k-space+sampling+and+deep+learning-based+image+processing&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Koktzoglou%2C+Ioannis&rft.au=Huang%2C+Rong&rft.au=Ong%2C+Archie+L&rft.au=Aouad%2C+Pascale+J&rft.date=2020-08-01&rft.eissn=1522-2594&rft.volume=84&rft.issue=2&rft.spage=825&rft_id=info:doi/10.1002%2Fmrm.28179&rft_id=info%3Apmid%2F31975432&rft.externalDocID=31975432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon