Feasibility of a sub‐3‐minute imaging strategy for ungated quiescent interval slice‐selective MRA of the extracranial carotid arteries using radial k‐space sampling and deep learning–based image processing
Purpose To develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice‐selective (QISS) MRA, combining single‐shot radial sampling with deep neural network–based image processing to optimi...
Saved in:
Published in | Magnetic resonance in medicine Vol. 84; no. 2; pp. 825 - 837 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.28179 |
Cover
Abstract | Purpose
To develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice‐selective (QISS) MRA, combining single‐shot radial sampling with deep neural network–based image processing to optimize image quality.
Methods
The extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k‐space sampling, single‐shot and multishot image acquisition (1.1‐3.3 seconds/slice, 141‐423 seconds/volume), and deep learning–based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial‐to‐background contrast and apparent contrast‐to‐noise ratio, and structural similarity index. Comparison of deep learning–based image processing was made with block matching and 3D filtering denoising.
Results
Compared with Cartesian sampling, radial k‐space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1‐shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1‐shot and much lengthier 3‐shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning–based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial‐to‐background contrast (P < .001) and apparent contrast‐to‐noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001).
Conclusion
Rapid, sub‐3‐minute evaluation of the extracranial carotid arteries is feasible with ungated single‐shot radial QISS, and benefits from the use of deep learning–based image processing to enhance source image quality. |
---|---|
AbstractList | To develop and test the feasibility of a sub-3-minute imaging strategy for non-contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice-selective (QISS) MRA, combining single-shot radial sampling with deep neural network-based image processing to optimize image quality.PURPOSETo develop and test the feasibility of a sub-3-minute imaging strategy for non-contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice-selective (QISS) MRA, combining single-shot radial sampling with deep neural network-based image processing to optimize image quality.The extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k-space sampling, single-shot and multishot image acquisition (1.1-3.3 seconds/slice, 141-423 seconds/volume), and deep learning-based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial-to-background contrast and apparent contrast-to-noise ratio, and structural similarity index. Comparison of deep learning-based image processing was made with block matching and 3D filtering denoising.METHODSThe extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k-space sampling, single-shot and multishot image acquisition (1.1-3.3 seconds/slice, 141-423 seconds/volume), and deep learning-based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial-to-background contrast and apparent contrast-to-noise ratio, and structural similarity index. Comparison of deep learning-based image processing was made with block matching and 3D filtering denoising.Compared with Cartesian sampling, radial k-space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1-shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1-shot and much lengthier 3-shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning-based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial-to-background contrast (P < .001) and apparent contrast-to-noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001).RESULTSCompared with Cartesian sampling, radial k-space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1-shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1-shot and much lengthier 3-shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning-based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial-to-background contrast (P < .001) and apparent contrast-to-noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001).Rapid, sub-3-minute evaluation of the extracranial carotid arteries is feasible with ungated single-shot radial QISS, and benefits from the use of deep learning-based image processing to enhance source image quality.CONCLUSIONRapid, sub-3-minute evaluation of the extracranial carotid arteries is feasible with ungated single-shot radial QISS, and benefits from the use of deep learning-based image processing to enhance source image quality. PurposeTo develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice‐selective (QISS) MRA, combining single‐shot radial sampling with deep neural network–based image processing to optimize image quality.MethodsThe extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k‐space sampling, single‐shot and multishot image acquisition (1.1‐3.3 seconds/slice, 141‐423 seconds/volume), and deep learning–based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial‐to‐background contrast and apparent contrast‐to‐noise ratio, and structural similarity index. Comparison of deep learning–based image processing was made with block matching and 3D filtering denoising.ResultsCompared with Cartesian sampling, radial k‐space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1‐shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1‐shot and much lengthier 3‐shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning–based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial‐to‐background contrast (P < .001) and apparent contrast‐to‐noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001).ConclusionRapid, sub‐3‐minute evaluation of the extracranial carotid arteries is feasible with ungated single‐shot radial QISS, and benefits from the use of deep learning–based image processing to enhance source image quality. To develop and test the feasibility of a sub-3-minute imaging strategy for non-contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice-selective (QISS) MRA, combining single-shot radial sampling with deep neural network-based image processing to optimize image quality. The extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k-space sampling, single-shot and multishot image acquisition (1.1-3.3 seconds/slice, 141-423 seconds/volume), and deep learning-based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial-to-background contrast and apparent contrast-to-noise ratio, and structural similarity index. Comparison of deep learning-based image processing was made with block matching and 3D filtering denoising. Compared with Cartesian sampling, radial k-space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1-shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1-shot and much lengthier 3-shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning-based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial-to-background contrast (P < .001) and apparent contrast-to-noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001). Rapid, sub-3-minute evaluation of the extracranial carotid arteries is feasible with ungated single-shot radial QISS, and benefits from the use of deep learning-based image processing to enhance source image quality. Purpose To develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated quiescent interval slice‐selective (QISS) MRA, combining single‐shot radial sampling with deep neural network–based image processing to optimize image quality. Methods The extracranial carotid arteries of 12 human subjects were imaged at 3 T using ungated QISS MRA. In 7 healthy volunteers, the effects of radial and Cartesian k‐space sampling, single‐shot and multishot image acquisition (1.1‐3.3 seconds/slice, 141‐423 seconds/volume), and deep learning–based image processing were evaluated using segmental image quality scoring, arterial temporal SNR, arterial‐to‐background contrast and apparent contrast‐to‐noise ratio, and structural similarity index. Comparison of deep learning–based image processing was made with block matching and 3D filtering denoising. Results Compared with Cartesian sampling, radial k‐space sampling increased arterial temporal SNR 107% (P < .001) and improved image quality during 1‐shot imaging (P < .05). The carotid arteries were depicted with similar image quality on the rapid 1‐shot and much lengthier 3‐shot radial QISS protocols (P = not significant), which was corroborated in patient studies. Deep learning–based image processing outperformed block matching and 3D filtering denoising in terms of structural similarity index (P < .001). Compared with original QISS source images, deep learning image processing provided 24% and 195% increases in arterial‐to‐background contrast (P < .001) and apparent contrast‐to‐noise ratio (P < .001), and provided source images that were preferred by radiologists (P < .001). Conclusion Rapid, sub‐3‐minute evaluation of the extracranial carotid arteries is feasible with ungated single‐shot radial QISS, and benefits from the use of deep learning–based image processing to enhance source image quality. |
Author | Koktzoglou, Ioannis Huang, Rong Edelman, Robert R. Ong, Archie L. Aouad, Pascale J. Aherne, Emily A. |
Author_xml | – sequence: 1 givenname: Ioannis orcidid: 0000-0001-9335-2010 surname: Koktzoglou fullname: Koktzoglou, Ioannis email: ikoktzoglou@gmail.com organization: Pritzker School of Medicine, University of Chicago – sequence: 2 givenname: Rong surname: Huang fullname: Huang, Rong organization: NorthShore University HealthSystem – sequence: 3 givenname: Archie L. surname: Ong fullname: Ong, Archie L. organization: NorthShore University HealthSystem – sequence: 4 givenname: Pascale J. surname: Aouad fullname: Aouad, Pascale J. organization: Northwestern University Feinberg School of Medicine – sequence: 5 givenname: Emily A. surname: Aherne fullname: Aherne, Emily A. organization: Northwestern University Feinberg School of Medicine – sequence: 6 givenname: Robert R. orcidid: 0000-0002-0013-8822 surname: Edelman fullname: Edelman, Robert R. organization: Northwestern University Feinberg School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31975432$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9u1DAQxi1URLeFAy-ALHGBQ1r_yyY-VhUFpK6QKjhbjj1ZXBxnazuFvfURkHg47n0SHHZ7qeBgWR7_vm_G4zlCB2EMgNBLSk4oIex0iMMJa2kjn6AFrRmrWC3FAVqQRpCKUykO0VFK14QQKRvxDB2WWFMLzhbo9wXo5DrnXd7isccap6m7v_vJyxpcmDJgN-i1C2ucctQZ1lvcjxFPYV0OFt9MDpKBkLELGeKt9jh5Z6DIE3gw2d0CXl2dzd75K2D4UVxM1MEV0ug4ZmexjkVafPCU5kRR2_n22-yx0QZw0sPGzzc6WGwBNtiDjqFE7u9-dTqVOuYiAW_iaCDNJs_R0177BC_2-zH6cvHu8_mH6vLT-4_nZ5eV4W0rqxoY15aajnBat71oOG0baUHK2pi27uaG2Zq2lveCayDasL4hVtNl3zBCGT9Gb3a-JfXNBCmrwZV-eK8DjFNSjAvBlstlIwv6-hF6PU4xlOoKJZkUTAhaqFd7auoGsGoTy9PiVj18WQFOd4CJY0oRemVc1tmNoXTWeUWJmodClaFQf4eiKN4-UjyY_ovdu393Hrb_B9XqarVT_AHuQc80 |
CitedBy_id | crossref_primary_10_1016_j_atherosclerosis_2022_06_1014 crossref_primary_10_1016_j_semcancer_2023_07_002 crossref_primary_10_1016_j_mri_2024_04_009 crossref_primary_10_1109_JPROC_2022_3141367 crossref_primary_10_1016_j_mric_2023_04_001 crossref_primary_10_1007_s00256_021_03751_6 crossref_primary_10_1016_j_cmpb_2023_107871 crossref_primary_10_1016_j_mri_2021_09_001 crossref_primary_10_1002_mrm_28339 crossref_primary_10_1016_j_nic_2020_04_004 crossref_primary_10_1186_s41747_025_00560_7 crossref_primary_10_1007_s00062_024_01458_4 crossref_primary_10_1155_2021_1197728 crossref_primary_10_1002_mrm_28738 crossref_primary_10_3389_fcvm_2023_1284743 |
Cites_doi | 10.1148/radiol.13131669 10.1148/radiology.173.2.2798885 10.1109/MSP.2017.2760358 10.1148/radiol.2015142690 10.1109/TIP.2003.819861 10.1016/j.zemedi.2018.11.002 10.1002/jmri.23515 10.1007/s00330-013-2931-x 10.1148/radiol.2423061640 10.1109/TIP.2007.901238 10.1038/sj.ki.5000368 10.1002/mrm.22287 10.1186/s12968-016-0238-1 10.1002/mrm.25477 10.1007/s00330-011-2110-x 10.2214/ajr.178.3.1780543 10.1002/mrm.20636 10.1148/radiol.2312030451 10.1002/jmri.24640 10.1002/mrm.25791 10.1186/s12968-015-0205-2 10.1177/1941874411418523 10.3174/ajnr.A1179 10.1002/mrm.26881 10.1159/000341410 10.2214/ajr.163.5.7976902 10.1002/jmri.26781 10.1002/jmri.22628 10.1002/mrm.26715 |
ContentType | Journal Article |
Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.28179 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 837 |
ExternalDocumentID | 31975432 10_1002_mrm_28179 MRM28179 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Biomedical Imaging and Bioengineering funderid: R01 EB027475 – fundername: NIBIB NIH HHS grantid: R01 EB027475 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3889-5e23ad1cb03158f4731879de995cc85b0997d518d3f43ae0ac2f70da16f720123 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 08:17:50 EDT 2025 Fri Jul 25 12:20:34 EDT 2025 Mon Jul 21 05:59:28 EDT 2025 Tue Jul 01 01:21:10 EDT 2025 Thu Apr 24 23:05:03 EDT 2025 Wed Jan 22 16:34:01 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning radial MRA QISS carotid |
Language | English |
License | 2020 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3889-5e23ad1cb03158f4731879de995cc85b0997d518d3f43ae0ac2f70da16f720123 |
Notes | Funding information National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health; Grant/Award Number R01EB027475 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9335-2010 0000-0002-0013-8822 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7180090 |
PMID | 31975432 |
PQID | 2392942441 |
PQPubID | 1016391 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2344266679 proquest_journals_2392942441 pubmed_primary_31975432 crossref_citationtrail_10_1002_mrm_28179 crossref_primary_10_1002_mrm_28179 wiley_primary_10_1002_mrm_28179_MRM28179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 17 2011; 1 2019; 50 2013; 23 2013; 40 2007; 242 2002; 178 2016; 75 2006 2011; 34 2014; 270 2005; 26 2016; 18 2012; 35 2010; 63 2007; 16 2007; 28 2004; 231 2019; 40 1989; 10 1994; 163 2008; 29 2015; 276 2015; 41 2004; 13 1989; 173 2011; 21 2019; 29 2005; 54 2015 2014; 72 2018; 35 2018; 79 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Peters S (e_1_2_8_23_1) 2019; 40 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Lell M (e_1_2_8_35_1) 2007; 28 Wagle WA (e_1_2_8_12_1) 1989; 10 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 Ronneberger O (e_1_2_8_27_1) 2015 e_1_2_8_34_1 e_1_2_8_33_1 Yang CW (e_1_2_8_6_1) 2005; 26 e_1_2_8_30_1 |
References_xml | – volume: 21 start-page: 1667 year: 2011 end-page: 1676 article-title: Magnetic resonance angiography of the carotid arteries: comparison of unenhanced and contrast enhanced techniques publication-title: Eur Radiol – volume: 23 start-page: 3020 year: 2013 end-page: 3028 article-title: Non‐ECG‐gated unenhanced MRA of the carotids: optimization and clinical feasibility publication-title: Eur Radiol – volume: 79 start-page: 2077 year: 2018 end-page: 2086 article-title: Radial fast interrupted steady‐state (FISS) magnetic resonance imaging publication-title: Magn Reson Med – volume: 75 start-page: 2072 year: 2016 end-page: 2077 article-title: Quiescent interval low angle shot magnetic resonance angiography of the extracranial carotid arteries publication-title: Magn Reson Med – volume: 13 start-page: 600 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process – volume: 40 start-page: 36 year: 2013 end-page: 41 article-title: Carotid artery stenosis as a cause of stroke publication-title: Neuroepidemiology – volume: 50 start-page: 1798 year: 2019 end-page: 1807 article-title: Ungated nonenhanced radial quiescent interval slice‐selective (QISS) magnetic resonance angiography of the neck: evaluation of image quality publication-title: J Magn Reson Imaging – volume: 72 start-page: 1522 year: 2014 end-page: 1529 article-title: Ungated radial quiescent‐inflow single‐shot (UnQISS) magnetic resonance angiography using optimized azimuthal equidistant projections publication-title: Magn Reson Med – volume: 29 start-page: 102 year: 2019 end-page: 127 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Z Med Phys – volume: 1 start-page: 187 year: 2011 end-page: 199 article-title: Computed tomography angiography in the assessment of patients with stroke/TIA publication-title: Neurohospitalist – volume: 26 start-page: 2095 year: 2005 end-page: 2101 article-title: Contrast‐enhanced MR angiography of the carotid and vertebrobasilar circulations publication-title: AJNR Am J Neuroradiol – volume: 41 start-page: 1150 year: 2015 end-page: 1156 article-title: Nonenhanced arterial spin labeled carotid MR angiography using three‐dimensional radial balanced steady‐state free precession imaging publication-title: J Magn Reson Imaging – volume: 270 start-page: 834 year: 2014 end-page: 841 article-title: High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1‐weighted MR images: relationship with increasing cumulative dose of a gadolinium‐based contrast material publication-title: Radiology – year: 2015 article-title: U‐net: convolutional networks for biomedical image segmentation publication-title: IEEE Comp Vis Pattern Recog – start-page: S11 year: 2006 end-page: S15 article-title: Contrast‐induced nephropathy: definition, epidemiology, and patients at risk publication-title: Kidney Int Suppl – volume: 29 start-page: 1736 year: 2008 end-page: s1742 article-title: MR imaging: influence of imaging technique and postprocessing on measurement of internal carotid artery stenosis publication-title: Am J Neuroradiol – volume: 28 start-page: 104 year: 2007 end-page: 110 article-title: Evaluation of carotid artery stenosis with multisection CT and MR imaging: influence of imaging modality and postprocessing publication-title: Am J Neuroradiol – volume: 18 start-page: 18 year: 2016 article-title: Nonenhanced hybridized arterial spin labeled magnetic resonance angiography of the extracranial carotid arteries using a fast low angle shot readout at 3 Tesla publication-title: J Cardiovasc Magn Reson – volume: 35 start-page: 20 year: 2018 end-page: 36 article-title: Using deep neural networks for inverse problems in imaging: beyond analytical methods publication-title: IEEE Signal Process Mag – volume: 54 start-page: 748 year: 2005 end-page: 754 article-title: Practical approaches to the evaluation of signal‐to‐noise ratio performance with parallel imaging: application with cardiac imaging and a 32‐channel cardiac coil publication-title: Magn Reson Med – volume: 40 start-page: 1529 year: 2019 end-page: 1537 article-title: Non‐contrast‐enhanced carotid MRA: clinical evaluation of a novel ungated radial quiescent‐interval slice‐selective MRA at 1.5T publication-title: Am J Neuroradiol – volume: 242 start-page: 647 year: 2007 end-page: 649 article-title: Gadolinium‐based MR contrast agents and nephrogenic systemic fibrosis publication-title: Radiology – volume: 17 start-page: 101 year: 2015 article-title: Breath‐hold imaging of the coronary arteries using Quiescent‐Interval Slice‐Selective (QISS) magnetic resonance angiography: pilot study at 1.5 Tesla and 3 Tesla publication-title: J Cardiovasc Magn Reson – volume: 63 start-page: 951 year: 2010 end-page: 958 article-title: Quiescent‐interval single‐shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility publication-title: Magn Reson Med – volume: 173 start-page: 527 year: 1989 end-page: 532 article-title: MR angiography with two‐dimensional acquisition and three‐dimensional display. Work in progress publication-title: Radiology – volume: 79 start-page: 683 year: 2018 end-page: 691 article-title: Super‐resolution intracranial quiescent interval slice‐selective magnetic resonance angiography publication-title: Magn Reson Med – volume: 276 start-page: 228 year: 2015 end-page: 232 article-title: Gadolinium‐based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy publication-title: Radiology – volume: 10 start-page: 911 year: 1989 end-page: 919 article-title: 3DFT MR angiography of carotid and basilar arteries publication-title: AJNR Am J Neuroradiol – volume: 231 start-page: 581 year: 2004 end-page: 586 article-title: Free‐breathing 3D steady‐state free precession coronary MR angiography with radial k‐space sampling: comparison with cartesian k‐space sampling and Cartesian gradient‐echo coronary MR angiography—pilot study publication-title: Radiology – volume: 16 start-page: 2080 year: 2007 end-page: 2095 article-title: Image denoising by Ssparse 3‐D transform‐domain collaborative filtering publication-title: IEEE Trans Image Process – volume: 163 start-page: 1205 year: 1994 end-page: 1212 article-title: Prospective evaluation of extracranial carotid stenosis: MR angiography with maximum‐intensity projections and multiplanar reformation compared with conventional angiography publication-title: AJR Am J Roentgenol – volume: 34 start-page: 384 year: 2011 end-page: 394 article-title: Nonenhanced extracranial carotid MR angiography using arterial spin labeling: improved performance with pseudocontinuous tagging publication-title: J Magn Reson Imaging – volume: 35 start-page: 957 year: 2012 end-page: 962 article-title: Noncontrast MR angiography for supraaortic arteries using inflow enhanced inversion recovery fast spin echo imaging publication-title: J Magn Reson Imaging – volume: 178 start-page: 543 year: 2002 end-page: 549 article-title: High‐resolution breath‐hold contrast‐enhanced MR angiography of the entire carotid circulation publication-title: AJR Am J Roentgenol – ident: e_1_2_8_8_1 doi: 10.1148/radiol.13131669 – ident: e_1_2_8_11_1 doi: 10.1148/radiology.173.2.2798885 – ident: e_1_2_8_24_1 doi: 10.1109/MSP.2017.2760358 – ident: e_1_2_8_9_1 doi: 10.1148/radiol.2015142690 – volume: 28 start-page: 104 year: 2007 ident: e_1_2_8_35_1 article-title: Evaluation of carotid artery stenosis with multisection CT and MR imaging: influence of imaging modality and postprocessing publication-title: Am J Neuroradiol – ident: e_1_2_8_29_1 doi: 10.1109/TIP.2003.819861 – year: 2015 ident: e_1_2_8_27_1 article-title: U‐net: convolutional networks for biomedical image segmentation publication-title: IEEE Comp Vis Pattern Recog – ident: e_1_2_8_25_1 doi: 10.1016/j.zemedi.2018.11.002 – ident: e_1_2_8_16_1 doi: 10.1002/jmri.23515 – ident: e_1_2_8_17_1 doi: 10.1007/s00330-013-2931-x – ident: e_1_2_8_10_1 doi: 10.1148/radiol.2423061640 – ident: e_1_2_8_28_1 doi: 10.1109/TIP.2007.901238 – ident: e_1_2_8_7_1 doi: 10.1038/sj.ki.5000368 – volume: 10 start-page: 911 year: 1989 ident: e_1_2_8_12_1 article-title: 3DFT MR angiography of carotid and basilar arteries publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_20_1 doi: 10.1002/mrm.22287 – ident: e_1_2_8_19_1 doi: 10.1186/s12968-016-0238-1 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.25477 – ident: e_1_2_8_2_1 – ident: e_1_2_8_14_1 doi: 10.1007/s00330-011-2110-x – ident: e_1_2_8_5_1 doi: 10.2214/ajr.178.3.1780543 – ident: e_1_2_8_26_1 doi: 10.1002/mrm.20636 – ident: e_1_2_8_30_1 doi: 10.1148/radiol.2312030451 – ident: e_1_2_8_18_1 doi: 10.1002/jmri.24640 – ident: e_1_2_8_21_1 doi: 10.1002/mrm.25791 – ident: e_1_2_8_32_1 doi: 10.1186/s12968-015-0205-2 – ident: e_1_2_8_4_1 doi: 10.1177/1941874411418523 – ident: e_1_2_8_36_1 doi: 10.3174/ajnr.A1179 – ident: e_1_2_8_34_1 doi: 10.1002/mrm.26881 – ident: e_1_2_8_3_1 doi: 10.1159/000341410 – volume: 40 start-page: 1529 year: 2019 ident: e_1_2_8_23_1 article-title: Non‐contrast‐enhanced carotid MRA: clinical evaluation of a novel ungated radial quiescent‐interval slice‐selective MRA at 1.5T publication-title: Am J Neuroradiol – ident: e_1_2_8_13_1 doi: 10.2214/ajr.163.5.7976902 – ident: e_1_2_8_22_1 doi: 10.1002/jmri.26781 – volume: 26 start-page: 2095 year: 2005 ident: e_1_2_8_6_1 article-title: Contrast‐enhanced MR angiography of the carotid and vertebrobasilar circulations publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_15_1 doi: 10.1002/jmri.22628 – ident: e_1_2_8_33_1 doi: 10.1002/mrm.26715 |
SSID | ssj0009974 |
Score | 2.4194605 |
Snippet | Purpose
To develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated... To develop and test the feasibility of a sub-3-minute imaging strategy for non-contrast evaluation of the extracranial carotid arteries using ungated quiescent... PurposeTo develop and test the feasibility of a sub‐3‐minute imaging strategy for non‐contrast evaluation of the extracranial carotid arteries using ungated... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 825 |
SubjectTerms | Arteries Artificial neural networks Background noise carotid Carotid arteries Carotid Arteries - diagnostic imaging Carotid artery Cartesian coordinates Deep Learning Feasibility Feasibility Studies Filtration Humans Image acquisition Image contrast Image enhancement Image Interpretation, Computer-Assisted Image processing Image quality Information processing Machine learning Magnetic Resonance Angiography Matching MRA Neural networks Noise reduction Protocol (computers) QISS Quality radial Sampling Shot Similarity Veins & arteries |
Title | Feasibility of a sub‐3‐minute imaging strategy for ungated quiescent interval slice‐selective MRA of the extracranial carotid arteries using radial k‐space sampling and deep learning–based image processing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28179 https://www.ncbi.nlm.nih.gov/pubmed/31975432 https://www.proquest.com/docview/2392942441 https://www.proquest.com/docview/2344266679 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBUh0NJNH-lr2rTcli668WQsW_aYrkLbEAruYmggi4KR9QgmGc90bC_SVT6h0I_rPl_SeyXbIX1A6WJgBsmSBt3HsX10LmOvZFjKLA1toBHMB3FiTJCZqAyE4EJaLU2m6KBw_jE5PIo_HIvjLfZmOAvj9SHGB27kGS5ek4PLstm7Eg1dbpZTPkd7wvgbRgnp5r9bXElHZZlXYE5jijNZPKgKzfjeeOX1XPQbwLyOV13CObjDPg9L9TyT02nXllP19RcVx__8L3fZ7R6Iwr63nHtsy9Q77Gbev2rfYTccN1Q199kPhIk9ifYcVhYkNF15efEtws-yqrvWQLV0xY6g8Vq354BQGDCM4A8NX7rKa0ZB5QiWOCuCW2Xw8sZV4cGAC_lin8ZGOAqYLjZSYQ5F1wAqK9RWGhz1FMcBIuqfwIYkFc7glMbAu34DjSRqPLbIWoM2Zg19PYyTy4vvlKq1W6SBtT8ZgQ0P2NHB-09vD4O-HkSgIiJjCcMjqUNVUmWKuY3TiEqla5NlQqm5KGnPtQjnOrJxJM1MKm7TmZZhYlNO2PEh265XtXnMQKbWhmVilBVJPFMcTTZDZFgmWSol3tFN2OvBMgrVi6VTzY6zwss88wK3rHBbNmEvx65rrxDyp067g3kVfZBoCk7YlA4ahhP2YmxG96Z3NrI2q476xIShEhrikTfLcRY061TEEcfFOuP6-_RFvsjdlyf_3vUpu8Xp2YIjO-6y7XbTmWcIwNryufO0nxe_Nho |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKEcuFpWwDBR6IA5dMJ842lrhUQDVA08OolXpBkWM71aidzDBJDuXUn4DEj-PeX8J7dpKqLBLiECmRHduR3_LZef4eY6-kn0uR-IWnEcx7YWyMJ0yQe1HEI1loaYSig8LpXjw5CD8eRodr7E13FsbxQ_QbbqQZ1l6TgtOG9NYFa-h8NR_yMQrUFXY1RKBBS6930wvyKCEcB3MSkqURYccrNOJb_auXvdFvEPMyYrUuZ-c2-9wN1kWaHA-bOh-qr7_wOP7v19xht1osCttOeO6yNVNusOtp-7d9g12z4aGqusd-IFJs42hPYVGAhKrJz8--BXjNZ2VTG5jNbb4jqBzd7SkgGga0JPig4Uszc7RRMLMxltgr4ltl8PXKJuJBmwvpdJvaRkQK6DFWUqEbRe0AyixUzzTY6FNsByhW_whWxKpwAsfUBi78DVSSouOxRJYatDFLaFNiHJ2ffSdvre0gDSzd4QgsuM8Odt7vv514bUoITwUUjxUZHkjtq5ySU4yLMAkoW7o2QkRKjaOcJl1H_lgHRRhIM5KKF8lISz8uEk7w8QFbLxelecRAJkXh57FRRRSHI8VRagWCwzwWiZS4qBuw151oZKrlS6e0HSeZY3rmGU5ZZqdswF72VZeOJORPlTY7-cpaO1FlnOApnTX0B-xFX4waTr9tZGkWDdUJCUbF1MRDJ5d9LyjXSRQGHAdrpevv3WfpNLU3j_-96nN2Y7Kf7ma7H_Y-PWE3OW012NjHTbZerxrzFPFYnT-zavcTQz06OQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6VIiouLIVCoMADceDiNB5vGXGqgKgsqVBEpR6QrPEsldXGCbF9KKf-BCR-HPf-Et4bL1VZJMQhUqIZz0w0b_lsf_M9xp5LP5Mi8a2nEcx7YWyMJ0yQeVHEI2m1NELRQeHpfrx3EL47jA7X2MvuLEyjD9E_cCPPcPGaHHyp7c6FaOh8NR_yMdrTFXY1jBFJECKaXWhHCdFIMCchBRoRdrJCI77TX3o5Gf2GMC8DVpdxJjfZ526tDdHkeFhX2VB9_UXG8T__zC12o0WisNuYzm22ZopNtjFt37VvsmuOHKrKO-wH4sSWRXsKCwsSyjo7P_sW4GeeF3VlIJ-7akdQNmK3p4BYGDCO4A8NX-q8EY2C3DEscVZEt8rg5aUrw4MRF6azXRob8ShgvlhJhUkUfQOorlCVa3DcUxwHiKl_BCvSVDiBYxoDb_sNlJK48dgiCw3amCW0BTGOzs--U67WbpEGls3RCGy4yw4mbz692vPaghCeCoiNFRkeSO2rjEpTjG2YBFQrXRshIqXGUUZ7riN_rAMbBtKMpOI2GWnpxzbhBB632HqxKMx9BjKx1s9io2wUhyPF0WYFQsMsFomUeEs3YC86y0hVq5ZORTtO0kbnmae4ZanbsgF71nddNhIhf-q03ZlX2kaJMuUETumkoT9gT_tm9G96aSMLs6ipT0ggKqYh7jVm2c-CZp1EYcBxsc64_j59Op1N3ZcH_971Cdv4-HqSfni7__4hu87pOYMjPm6z9WpVm0cIxqrssXO6n4NKOOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+a+sub-3-minute+imaging+strategy+for+ungated+quiescent+interval+slice-selective+MRA+of+the+extracranial+carotid+arteries+using+radial+k-space+sampling+and+deep+learning-based+image+processing&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Koktzoglou%2C+Ioannis&rft.au=Huang%2C+Rong&rft.au=Ong%2C+Archie+L&rft.au=Aouad%2C+Pascale+J&rft.date=2020-08-01&rft.eissn=1522-2594&rft.volume=84&rft.issue=2&rft.spage=825&rft_id=info:doi/10.1002%2Fmrm.28179&rft_id=info%3Apmid%2F31975432&rft.externalDocID=31975432 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |