Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles
Superparamagnetic nanoparticles of magnetite (Fe3O4) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room temperature show a broad line with a Landé g ‐factor, g eff ≈ 2. It was observed that, as the temperature decreased to 24 K, the apparent re...
Saved in:
Published in | Physica status solidi. A, Applications and materials science Vol. 203; no. 7; pp. 1595 - 1601 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Berlin
WILEY-VCH Verlag
01.05.2006
WILEY‐VCH Verlag Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 1862-6300 1862-6319 |
DOI | 10.1002/pssa.200563104 |
Cover
Loading…
Abstract | Superparamagnetic nanoparticles of magnetite (Fe3O4) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room temperature show a broad line with a Landé g ‐factor, g eff ≈ 2. It was observed that, as the temperature decreased to 24 K, the apparent resonance field decreases while the line width considerably increases. We used a theoretical formalism based on a distribution of diameters or volumes of the nanoparticles. The nanoparticles behave as single magnetic domains with random orientations of magnetic moments which are subject to thermal fluctuations. A Landau–Lifshitz line shape function presents adequate results which are in good agreement with the experimental ones. A single set of parameters provides good fits to the spectra recorded at different temperatures. At high T the SPR line shape is governed by the core anisotropy and the thermal fluctuations. By decreasing the temperature, the magnetic susceptibility of shell spins increases. As a result of this, the surface spins produce an effective field on the core leading to a decrease of resonance field, B r. Also, the effective anisotropy increases as the shell spins begin to order. So, the results are interpreted by a simple model, in which each single‐domain nanoparticle is considered as a core–shell system, with magnetocrystalline anisotropy on the core and surface anisotropy on the shell. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
AbstractList | Superparamagnetic nanoparticles of magnetite (Fe3O4) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room temperature show a broad line with a Landé g ‐factor, g eff ≈ 2. It was observed that, as the temperature decreased to 24 K, the apparent resonance field decreases while the line width considerably increases. We used a theoretical formalism based on a distribution of diameters or volumes of the nanoparticles. The nanoparticles behave as single magnetic domains with random orientations of magnetic moments which are subject to thermal fluctuations. A Landau–Lifshitz line shape function presents adequate results which are in good agreement with the experimental ones. A single set of parameters provides good fits to the spectra recorded at different temperatures. At high T the SPR line shape is governed by the core anisotropy and the thermal fluctuations. By decreasing the temperature, the magnetic susceptibility of shell spins increases. As a result of this, the surface spins produce an effective field on the core leading to a decrease of resonance field, B r. Also, the effective anisotropy increases as the shell spins begin to order. So, the results are interpreted by a simple model, in which each single‐domain nanoparticle is considered as a core–shell system, with magnetocrystalline anisotropy on the core and surface anisotropy on the shell. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) Superparamagnetic nanoparticles of magnetite (Fe 3 O 4 ) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room temperature show a broad line with a Landé g ‐factor, g eff ≈ 2. It was observed that, as the temperature decreased to 24 K, the apparent resonance field decreases while the line width considerably increases. We used a theoretical formalism based on a distribution of diameters or volumes of the nanoparticles. The nanoparticles behave as single magnetic domains with random orientations of magnetic moments which are subject to thermal fluctuations. A Landau–Lifshitz line shape function presents adequate results which are in good agreement with the experimental ones. A single set of parameters provides good fits to the spectra recorded at different temperatures. At high T the SPR line shape is governed by the core anisotropy and the thermal fluctuations. By decreasing the temperature, the magnetic susceptibility of shell spins increases. As a result of this, the surface spins produce an effective field on the core leading to a decrease of resonance field, B r . Also, the effective anisotropy increases as the shell spins begin to order. So, the results are interpreted by a simple model, in which each single‐domain nanoparticle is considered as a core–shell system, with magnetocrystalline anisotropy on the core and surface anisotropy on the shell. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
Author | Kavas, H. Aktaş, and B. Köseoğlu, Y. |
Author_xml | – sequence: 1 givenname: Y. surname: Köseoğlu fullname: Köseoğlu, Y. email: yukselk@fatih.edu.tr organization: Fatih University, Department of Physics, 34500 Istanbul, Turkey – sequence: 2 givenname: H. surname: Kavas fullname: Kavas, H. organization: Fatih University, Department of Physics, 34500 Istanbul, Turkey – sequence: 3 givenname: and B. surname: Aktaş fullname: Aktaş, and B. organization: Gebze Institute of Technology, Department of Physics, 41400 Kocaeli, Turkey |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17795426$$DView record in Pascal Francis |
BookMark | eNqFkM1Lw0AQxRepYFu9es7FY-p-JzmWYqvQqpCKx2WznZXVNAm7Kdr_3pSWIIJ4mjcz7_cOb4QGVV0BQtcETwjG9LYJQU8oxkIygvkZGpJU0rhbskGvMb5AoxDeMeaCJ2SI8nznrTYQgbVg2hDVVbTVbxW0zkSNrxvwrYPubKOw65ZGe93_T6KFqNJV3b26YwnhEp1bXQa4Os0xepnfrWf38fJp8TCbLmPD0pTHHBgALaxlKaVCSssMNZBmTNtUFnQDSZIRMFQKUUBWaGYMLVIhMZObDBNgY3RzzG10MLq0XlfGBdV4t9V-r0jHC05l5-NHn_F1CB6sMq7Vraur1mtXKoLVoUB1KFD1BXbY5BfWJ_8FZEfg05Ww_8etnvN8-pONj6wLLXz1rPYfSiYsEer1caHYKuH5fDVXa_YNpAiXHg |
CitedBy_id | crossref_primary_10_1063_1_3676438 crossref_primary_10_1016_j_materresbull_2012_11_023 crossref_primary_10_1016_j_poly_2010_10_028 crossref_primary_10_1080_01411594_2017_1409351 crossref_primary_10_1016_j_poly_2009_06_061 crossref_primary_10_1109_TMAG_2012_2228471 crossref_primary_10_1021_acsomega_9b02492 crossref_primary_10_4028_www_scientific_net_SSP_241_69 crossref_primary_10_1007_s10948_012_1972_8 crossref_primary_10_1016_j_physb_2008_07_002 crossref_primary_10_1021_nl200136j crossref_primary_10_1016_j_jallcom_2007_07_121 crossref_primary_10_1016_j_jmmm_2011_10_030 crossref_primary_10_1103_PhysRevB_98_054401 crossref_primary_10_1016_j_jallcom_2015_03_203 crossref_primary_10_1016_j_matchemphys_2013_02_033 crossref_primary_10_1016_j_rinp_2017_12_062 crossref_primary_10_1016_j_scient_2012_10_013 crossref_primary_10_1111_jace_12317 crossref_primary_10_1016_j_heliyon_2024_e25511 crossref_primary_10_1140_epjp_s13360_021_01737_w crossref_primary_10_1016_j_jmmm_2014_02_072 crossref_primary_10_1016_j_jallcom_2013_04_206 crossref_primary_10_1016_j_jallcom_2023_170589 crossref_primary_10_1007_s11051_010_9898_1 crossref_primary_10_1103_PhysRevApplied_22_044082 crossref_primary_10_1016_j_matchemphys_2010_03_080 crossref_primary_10_1007_s00396_014_3357_y crossref_primary_10_1016_j_ceramint_2012_01_001 crossref_primary_10_4236_msa_2013_47052 crossref_primary_10_1016_j_jmmm_2009_01_008 crossref_primary_10_1007_s10948_014_2707_9 crossref_primary_10_1016_j_physb_2016_08_011 crossref_primary_10_1016_j_ssc_2020_114146 crossref_primary_10_1016_j_jmmm_2009_11_018 crossref_primary_10_1088_0022_3727_42_24_245301 crossref_primary_10_1016_j_ceramint_2012_11_004 crossref_primary_10_1002_adfm_201403436 crossref_primary_10_1016_j_ceramint_2012_05_055 crossref_primary_10_1016_j_jmmm_2012_06_031 crossref_primary_10_1016_j_materresbull_2011_11_011 crossref_primary_10_1007_s11664_016_4636_9 crossref_primary_10_1016_j_colsurfa_2021_127622 crossref_primary_10_1063_1_4983849 crossref_primary_10_1007_s10854_018_00640_y crossref_primary_10_1134_S0021364008150071 crossref_primary_10_1016_j_jmmm_2014_02_052 crossref_primary_10_1007_s10948_022_06321_6 crossref_primary_10_1007_s10853_015_9324_2 crossref_primary_10_1007_s10948_012_1772_1 crossref_primary_10_1016_j_materresbull_2012_12_028 crossref_primary_10_1016_j_jallcom_2008_04_101 crossref_primary_10_1007_s10854_017_8308_1 |
Cites_doi | 10.1016/0304-8853(95)01039-4 10.1016/S0304-8853(02)01026-0 10.1088/0953-8984/12/44/315 10.1016/S0304-8853(01)00347-X 10.1016/0304-8853(95)00341-X 10.1016/j.jmmm.2003.09.005 10.1016/S0031-8914(41)80005-6 10.1016/S0022-3697(01)00099-3 10.1038/144327b0 10.1016/S0304-8853(99)00808-2 10.1063/1.1746466 10.1016/j.physb.2004.09.103 10.1016/S0040-6090(97)00311-8 10.1016/S0304-8853(03)00486-4 10.1016/j.jmmm.2005.03.017 10.1016/S0304-8853(02)00044-6 10.1016/S0304-8853(97)01165-7 10.1016/0304-8853(95)00365-7 10.1002/pssb.200440046 10.1016/S0304-8853(99)00347-9 10.1016/S0304-8853(00)01224-5 10.1016/S0304-8853(00)01255-5 10.1016/S0304-8853(02)01077-6 |
ContentType | Journal Article Conference Proceeding |
Copyright | Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2006 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2006 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW |
DOI | 10.1002/pssa.200563104 |
DatabaseName | Istex CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6319 |
EndPage | 1601 |
ExternalDocumentID | 17795426 10_1002_pssa_200563104 PSSA200563104 ark_67375_WNG_3M74SFMF_T |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ V2E W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ GYQRN AAYXX AEYWJ AGQPQ AGYGG CITATION IQODW |
ID | FETCH-LOGICAL-c3884-4e3ee2bff3822566f3c2ce893af86b2de7791ec2655be9ba3cc2b856036d901e3 |
IEDL.DBID | DR2 |
ISSN | 1862-6300 |
IngestDate | Wed Apr 02 08:08:39 EDT 2025 Tue Jul 01 02:07:36 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Wed Jan 22 16:40:43 EST 2025 Wed Oct 30 09:55:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Fluctuations Line shape Line widths Magnetic moments Superparamagnetism Magnetic susceptibility g-factor Nanoparticles Magnetite Domain structure Temperature effects Magnetic anisotropy Magnetic domains Iron oxides Resonance technique |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3884-4e3ee2bff3822566f3c2ce893af86b2de7791ec2655be9ba3cc2b856036d901e3 |
Notes | istex:4880FDA7BDB96B8193D2BAC711C54A559983EAAE ArticleID:PSSA200563104 ark:/67375/WNG-3M74SFMF-T |
PageCount | 7 |
ParticipantIDs | pascalfrancis_primary_17795426 crossref_citationtrail_10_1002_pssa_200563104 crossref_primary_10_1002_pssa_200563104 wiley_primary_10_1002_pssa_200563104_PSSA200563104 istex_primary_ark_67375_WNG_3M74SFMF_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2006 |
PublicationDateYYYYMMDD | 2006-05-01 |
PublicationDate_xml | – month: 05 year: 2006 text: May 2006 |
PublicationDecade | 2000 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Physica status solidi. A, Applications and materials science |
PublicationTitleAlternate | phys. stat. sol. (a) |
PublicationYear | 2006 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH |
References | Juh-Tzeng Lue, J. Phys. Chem. Solids 62, 1599 (2001). D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed, J. Magn. Magn. Mater. 225, 256 (2001). E. J. W. Verwey, P. W. Haayman, and F. C. Romeijn, J. Chem. Phys. 15, 181 (1947). J. Popplewell and L. Sakhnini, J. Magn. Magn. Mater. 149, 72 (1995). B. Aktas, Thin Solid Films 307, 250 (1997). L. Horng, G. Chern, M. C. Chen, P. C. Kang, and D. S. Lee, J. Magn. Magn. Mater. 270-273, 389 (2004). R. Berger, J. Bissey, J. Kliava, H. Daubric, and C. Estournes, J. Magn. Magn. Mater. 234, 535 (2001). V. I. Nikolaev, T. A. Bushina, and Kim Eng Chan, J. Magn. Magn. Mater. 213, 213 (2000). Y. Köseoğlu, F. Yıldız, J. V. Yakhmi, J. Qin, X. Chen, and B. Aktaş, J. Magn. Magn. Mater. 258/259, 416 (2003). Y. Köseoğlu, F. Yıldız, G. Salazar-Alvarez, M. Toprak, M. Muhammed, and B. Aktaş, phys. stat. sol. (b) 242-248, 1712 (2005). M. F. Hansen and S. Morup, J. Magn. Magn. Mater. 184, 262 (1998). P. Brahma, S. Banerjee, D. Das, P. K. Mukhopadhyay, S. Chatterjee, A. K. Nigam, and D. Chakravorty, J. Magn. Magn. Mater. 246, 162 (2002). E. J. W. Verwey, Nature 144, 327 (1939). D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, and M. Muhammed, J. Magn. Magn. Mater. 255, 30 (2001). E. J. W. Verwey and P. W. Haayman, Physica 8, 979 (1941). E. De Biasi, R. D. Zysler, C. A. Ramos, and H. Romero, J. Magn. Magn. Mater. 294, e87 (2005). R. H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999). R. W. Chantrell, G. N. Coverdale, M. El Hilo, and K. O'Grady, J. Magn. Magn. Mater. 157/158, 250 (1996). K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995). R. D. Zysler, H. Romero, C. A. Ramos, E. De Biasi, and D. Fiorani, J. Magn. Magn. Mater. 266, 233 (2003). R. Berger, J. C. Bissey, and J. Kliava, J. Phys.: Condens. Matter 12, 9347 (2000). E. De Biasi, C. A. Ramos, R. D. Zysler, and H. Romero, Physica B 354, 286 (2004). Y. Köseoğlu, R. Yılgın, J. V. Yakhmi, J. Qin, X. Chen, and B. Aktaş, J. Magn. Magn. Mater. 258/259, 141 (2003). 2004; 354 2001; 234 2001; 255 2005; 294 1997; 307 1941; 8 2000; 213 2000; 12 2002; 246 1947; 15 1939; 144 1995; 149 2004; 270–273 1999; 200 1996; 157/158 2005; 242–248 2003; 266 2001; 225 2001; 62 1998; 184 2003; 258/259 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_22_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_10_2 e_1_2_1_21_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_24_2 e_1_2_1_14_2 e_1_2_1_25_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: Y. Köseoğlu, R. Yılgın, J. V. Yakhmi, J. Qin, X. Chen, and B. Aktaş, J. Magn. Magn. Mater. 258/259, 141 (2003). – reference: R. D. Zysler, H. Romero, C. A. Ramos, E. De Biasi, and D. Fiorani, J. Magn. Magn. Mater. 266, 233 (2003). – reference: E. J. W. Verwey, P. W. Haayman, and F. C. Romeijn, J. Chem. Phys. 15, 181 (1947). – reference: R. W. Chantrell, G. N. Coverdale, M. El Hilo, and K. O'Grady, J. Magn. Magn. Mater. 157/158, 250 (1996). – reference: K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995). – reference: Y. Köseoğlu, F. Yıldız, G. Salazar-Alvarez, M. Toprak, M. Muhammed, and B. Aktaş, phys. stat. sol. (b) 242-248, 1712 (2005). – reference: B. Aktas, Thin Solid Films 307, 250 (1997). – reference: J. Popplewell and L. Sakhnini, J. Magn. Magn. Mater. 149, 72 (1995). – reference: P. Brahma, S. Banerjee, D. Das, P. K. Mukhopadhyay, S. Chatterjee, A. K. Nigam, and D. Chakravorty, J. Magn. Magn. Mater. 246, 162 (2002). – reference: R. H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999). – reference: D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, and M. Muhammed, J. Magn. Magn. Mater. 255, 30 (2001). – reference: M. F. Hansen and S. Morup, J. Magn. Magn. Mater. 184, 262 (1998). – reference: D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed, J. Magn. Magn. Mater. 225, 256 (2001). – reference: E. J. W. Verwey, Nature 144, 327 (1939). – reference: E. J. W. Verwey and P. W. Haayman, Physica 8, 979 (1941). – reference: Y. Köseoğlu, F. Yıldız, J. V. Yakhmi, J. Qin, X. Chen, and B. Aktaş, J. Magn. Magn. Mater. 258/259, 416 (2003). – reference: V. I. Nikolaev, T. A. Bushina, and Kim Eng Chan, J. Magn. Magn. Mater. 213, 213 (2000). – reference: Juh-Tzeng Lue, J. Phys. Chem. Solids 62, 1599 (2001). – reference: E. De Biasi, C. A. Ramos, R. D. Zysler, and H. Romero, Physica B 354, 286 (2004). – reference: R. Berger, J. Bissey, J. Kliava, H. Daubric, and C. Estournes, J. Magn. Magn. Mater. 234, 535 (2001). – reference: R. Berger, J. C. Bissey, and J. Kliava, J. Phys.: Condens. Matter 12, 9347 (2000). – reference: L. Horng, G. Chern, M. C. Chen, P. C. Kang, and D. S. Lee, J. Magn. Magn. Mater. 270-273, 389 (2004). – reference: E. De Biasi, R. D. Zysler, C. A. Ramos, and H. Romero, J. Magn. Magn. Mater. 294, e87 (2005). – volume: 144 start-page: 327 year: 1939 publication-title: Nature – volume: 258/259 start-page: 416 year: 2003 publication-title: J. Magn. Magn. Mater. – volume: 213 start-page: 213 year: 2000 publication-title: J. Magn. Magn. Mater. – volume: 266 start-page: 233 year: 2003 publication-title: J. Magn. Magn. Mater. – volume: 270–273 start-page: 389 year: 2004 publication-title: J. Magn. Magn. Mater. – volume: 354 start-page: 286 year: 2004 publication-title: Physica B – volume: 258/259 start-page: 141 year: 2003 publication-title: J. Magn. Magn. Mater. – volume: 242–248 start-page: 1712 year: 2005 publication-title: phys. stat. sol. (b) – volume: 294 start-page: e87 year: 2005 publication-title: J. Magn. Magn. Mater. – volume: 149 start-page: 174 year: 1995 publication-title: J. Magn. Magn. Mater. – volume: 255 start-page: 30 year: 2001 publication-title: J. Magn. Magn. Mater. – volume: 12 start-page: 9347 year: 2000 publication-title: J. Phys.: Condens. Matter – volume: 246 start-page: 162 year: 2002 publication-title: J. Magn. Magn. Mater. – volume: 15 start-page: 181 year: 1947 publication-title: J. Chem. Phys. – volume: 62 start-page: 1599 year: 2001 publication-title: J. Phys. Chem. Solids – volume: 225 start-page: 256 year: 2001 publication-title: J. Magn. Magn. Mater. – volume: 307 start-page: 250 year: 1997 publication-title: Thin Solid Films – volume: 234 start-page: 535 year: 2001 publication-title: J. Magn. Magn. Mater. – volume: 184 start-page: 262 year: 1998 publication-title: J. Magn. Magn. Mater. – volume: 8 start-page: 979 year: 1941 publication-title: Physica – volume: 149 start-page: 72 year: 1995 publication-title: J. Magn. Magn. Mater. – volume: 200 start-page: 359 year: 1999 publication-title: J. Magn. Magn. Mater. – volume: 157/158 start-page: 250 year: 1996 publication-title: J. Magn. Magn. Mater. – ident: e_1_2_1_12_2 doi: 10.1016/0304-8853(95)01039-4 – ident: e_1_2_1_23_2 doi: 10.1016/S0304-8853(02)01026-0 – ident: e_1_2_1_17_2 doi: 10.1088/0953-8984/12/44/315 – ident: e_1_2_1_16_2 doi: 10.1016/S0304-8853(01)00347-X – ident: e_1_2_1_4_2 doi: 10.1016/0304-8853(95)00341-X – ident: e_1_2_1_20_2 doi: 10.1016/j.jmmm.2003.09.005 – ident: e_1_2_1_21_2 doi: 10.1016/S0031-8914(41)80005-6 – ident: e_1_2_1_14_2 doi: 10.1016/S0022-3697(01)00099-3 – ident: e_1_2_1_3_2 doi: 10.1038/144327b0 – ident: e_1_2_1_13_2 doi: 10.1016/S0304-8853(99)00808-2 – ident: e_1_2_1_8_2 – ident: e_1_2_1_22_2 doi: 10.1063/1.1746466 – ident: e_1_2_1_18_2 doi: 10.1016/j.physb.2004.09.103 – ident: e_1_2_1_11_2 doi: 10.1016/S0040-6090(97)00311-8 – ident: e_1_2_1_25_2 doi: 10.1016/S0304-8853(03)00486-4 – ident: e_1_2_1_10_2 doi: 10.1016/j.jmmm.2005.03.017 – ident: e_1_2_1_19_2 doi: 10.1016/S0304-8853(02)00044-6 – ident: e_1_2_1_15_2 doi: 10.1016/S0304-8853(97)01165-7 – ident: e_1_2_1_5_2 doi: 10.1016/0304-8853(95)00365-7 – ident: e_1_2_1_6_2 doi: 10.1002/pssb.200440046 – ident: e_1_2_1_2_2 doi: 10.1016/S0304-8853(99)00347-9 – ident: e_1_2_1_9_2 doi: 10.1016/S0304-8853(00)01224-5 – ident: e_1_2_1_7_2 doi: 10.1016/S0304-8853(00)01255-5 – ident: e_1_2_1_24_2 doi: 10.1016/S0304-8853(02)01077-6 |
SSID | ssj0045471 |
Score | 2.023795 |
Snippet | Superparamagnetic nanoparticles of magnetite (Fe3O4) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room... Superparamagnetic nanoparticles of magnetite (Fe 3 O 4 ) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at... |
SourceID | pascalfrancis crossref wiley istex |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 1595 |
SubjectTerms | 75.50.Bb 75.50.Tt 75.50.Vv 75.75.+a 76.30.Da 76.50.+g Condensed matter: electronic structure, electrical, magnetic, and optical properties Diamagnetism, paramagnetism and superparamagnetism Exact sciences and technology Magnetic properties and materials Magnetic properties of nanostructures Physics |
Title | Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles |
URI | https://api.istex.fr/ark:/67375/WNG-3M74SFMF-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.200563104 |
Volume | 203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iCL54F-dl5EH0qbukTdo9DnEOYUPshnsrSZr4MO3GuoH46z2n7ToniKBvDU3a5pyk50v48h1CrmIjhYBY4HDNmeMZ4ztKxMIRcUP7EuIHkxnLty-6Q-9hxEdfTvHn-hDlhhvOjOx_jRNcqrS-Eg2dpmmuGyQAoaAgKBK2EBU9lfpRKFaVrbgAtjuoLbVUbWyw-nrztai0hQZ-R5akTMFQNs9wsY5es_DT2SNy-eE562RcW8xVTX9803T8T8_2yW6BTWk7H0wHZMMkh2Q744jq9IiE4WJmpTa04IDQSULf5EuCxyDpFDf1Z6jOSieWpgsooKp4eb-4mBuayAQW6gUf75gMO3eD265T5GRwtBsEHnjTNYYpa11AFgAFrauZNgB6pA2EYrHx_VbTaCY4V6alpKs1UwHAKlfEAD2Me0I2k0liTgn1hI51swUNgxjz3EkP1jo8ALRvGzw2tkKcpU8iXQiWY96M1yiXWmYRGioqDVUhN2X9aS7V8WPN68zFZTU5GyPBzefRc_8-cnu-F3Z6nWhQIdW1MbB6LnSTA7ipEJZ58pcXRo9h2C5LZ39pdE528t0f5FpekM35bGEuAQ_NVTUb858wKgMq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7aD6HtAvvBRBkMH9A4ZWud2EmPFdB1bK0Q6TRulu3YO4ylVdNKiL9-7yVpqiIhpO0WK3YSv2fHn58-fw_gY-a0lLgWBMIKHkTOxYGRmQxk1raxxvWD65LlO5KDm-jbT7FkE9JZmEofogm40cwo_9c0wSkgfb5SDZ0WRSUcJBGiRJuwTWm9KYnBlx-NghTJVZV7LgTuAalLLXUb2_x8vf3aurRNJv5NPEldoKl8leNiHb-WC1D_FZjlp1e8k_uzxdyc2T9_qTo-q2978LKGp6xXjad92HD5AbwoaaK2OIQ0Xcy8to7VNBA2ydmDvsvpJCSbUlx_RgKtbOJZscACCYs39-uLuWO5znGvXlPyXsNN_-v48yCo0zIENkySCB0aOseN9yGCC0SDPrTcOsQ92ifS8MzFcbfjLJdCGNc1OrSWmwSRVSgzRB8uPIKtfJK7N8AiaTPb6WLDJKNUdzrC7Y5IEPD7tsicb0GwdIqytWY5pc74pSq1Za7IUKoxVAs-NfWnlVrHP2uelj5uqunZPXHcYqFuRxcqHMZR2h_21bgFJ2uDYPVc7KZAfNMCXrryPy9U39O015TePqXRB9gZjIfX6vpydHUMu1UwiKiX72BrPlu49wiP5uaknACPWxgHRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xEIgLr90V5ekDglOgOLGTHisgvCtEQMvNcvzYA5BWTSshfj3jJE0pEkJabrFiJ_GMnflsff4GYFcbyTnGAo8pRr3AmNBLueYe100VSowfVBYs3w4_fwguH9njh1P8pT5EveHmZkbxv3YTvKft4Vg0tJfnpW4QR4QSTMNswHHGOFh0VwtIObWqYsmFuN1z4lIj2cYmPZxsPxGWZp2FXx1NUuZoKVumuJiEr0X8iZdAjr68pJ08HQwH6YF6-yTq-JOuLcNiBU5JuxxNKzBlslWYK0iiKv8FSTLsW6kMqUggpJuRF_kvc-cgSc_t6vedPCvpWpIPseBkxev71cXAkExmuFKvCHm_4SE-vT8-96qkDJ7yoyhAd_rG0NRaH6EFYkHrK6oMoh5pI55SbcKwdWQU5YylppVKXymaRoirfK4Rexj_D8xk3cysAQm40uqohQ0j7RLdyQAXOyxCuG-bTBvbAG_kE6EqxXKXOONZlFrLVDhDidpQDdiv6_dKrY4va-4VLq6ryf6TY7iFTPztnAn_JgyS-CYW9w3YnhgD4-diNxmimwbQwpPfvFDcJkm7Lq3_T6MdmL89icX1RedqAxbKnSDHu9yEmUF_aLYQGw3S7WL4vwNaEgX8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.atitle=Surface+effects+on+magnetic+properties+of+superparamagnetic+magnetite+nanoparticles&rft.au=K%C3%96SEOGLU%2C+Y&rft.au=KAVAS%2C+H&rft.au=AKTAS%2C+B&rft.date=2006-05-01&rft.pub=Wiley-VCH&rft.issn=1862-6300&rft.volume=203&rft.issue=7&rft.spage=1595&rft.epage=1601&rft_id=info:doi/10.1002%2Fpssa.200563104&rft.externalDBID=n%2Fa&rft.externalDocID=17795426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon |