Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles

Superparamagnetic nanoparticles of magnetite (Fe3O4) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room temperature show a broad line with a Landé g ‐factor, g eff ≈ 2. It was observed that, as the temperature decreased to 24 K, the apparent re...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. A, Applications and materials science Vol. 203; no. 7; pp. 1595 - 1601
Main Authors Köseoğlu, Y., Kavas, H., Aktaş, and B.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Berlin WILEY-VCH Verlag 01.05.2006
WILEY‐VCH Verlag
Wiley-VCH
Subjects
Online AccessGet full text
ISSN1862-6300
1862-6319
DOI10.1002/pssa.200563104

Cover

Loading…
Abstract Superparamagnetic nanoparticles of magnetite (Fe3O4) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room temperature show a broad line with a Landé g ‐factor, g eff ≈ 2. It was observed that, as the temperature decreased to 24 K, the apparent resonance field decreases while the line width considerably increases. We used a theoretical formalism based on a distribution of diameters or volumes of the nanoparticles. The nanoparticles behave as single magnetic domains with random orientations of magnetic moments which are subject to thermal fluctuations. A Landau–Lifshitz line shape function presents adequate results which are in good agreement with the experimental ones. A single set of parameters provides good fits to the spectra recorded at different temperatures. At high T the SPR line shape is governed by the core anisotropy and the thermal fluctuations. By decreasing the temperature, the magnetic susceptibility of shell spins increases. As a result of this, the surface spins produce an effective field on the core leading to a decrease of resonance field, B r. Also, the effective anisotropy increases as the shell spins begin to order. So, the results are interpreted by a simple model, in which each single‐domain nanoparticle is considered as a core–shell system, with magnetocrystalline anisotropy on the core and surface anisotropy on the shell. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
AbstractList Superparamagnetic nanoparticles of magnetite (Fe3O4) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room temperature show a broad line with a Landé g ‐factor, g eff ≈ 2. It was observed that, as the temperature decreased to 24 K, the apparent resonance field decreases while the line width considerably increases. We used a theoretical formalism based on a distribution of diameters or volumes of the nanoparticles. The nanoparticles behave as single magnetic domains with random orientations of magnetic moments which are subject to thermal fluctuations. A Landau–Lifshitz line shape function presents adequate results which are in good agreement with the experimental ones. A single set of parameters provides good fits to the spectra recorded at different temperatures. At high T the SPR line shape is governed by the core anisotropy and the thermal fluctuations. By decreasing the temperature, the magnetic susceptibility of shell spins increases. As a result of this, the surface spins produce an effective field on the core leading to a decrease of resonance field, B r. Also, the effective anisotropy increases as the shell spins begin to order. So, the results are interpreted by a simple model, in which each single‐domain nanoparticle is considered as a core–shell system, with magnetocrystalline anisotropy on the core and surface anisotropy on the shell. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Superparamagnetic nanoparticles of magnetite (Fe 3 O 4 ) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room temperature show a broad line with a Landé g ‐factor, g eff ≈ 2. It was observed that, as the temperature decreased to 24 K, the apparent resonance field decreases while the line width considerably increases. We used a theoretical formalism based on a distribution of diameters or volumes of the nanoparticles. The nanoparticles behave as single magnetic domains with random orientations of magnetic moments which are subject to thermal fluctuations. A Landau–Lifshitz line shape function presents adequate results which are in good agreement with the experimental ones. A single set of parameters provides good fits to the spectra recorded at different temperatures. At high T the SPR line shape is governed by the core anisotropy and the thermal fluctuations. By decreasing the temperature, the magnetic susceptibility of shell spins increases. As a result of this, the surface spins produce an effective field on the core leading to a decrease of resonance field, B r . Also, the effective anisotropy increases as the shell spins begin to order. So, the results are interpreted by a simple model, in which each single‐domain nanoparticle is considered as a core–shell system, with magnetocrystalline anisotropy on the core and surface anisotropy on the shell. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Author Kavas, H.
Aktaş, and B.
Köseoğlu, Y.
Author_xml – sequence: 1
  givenname: Y.
  surname: Köseoğlu
  fullname: Köseoğlu, Y.
  email: yukselk@fatih.edu.tr
  organization: Fatih University, Department of Physics, 34500 Istanbul, Turkey
– sequence: 2
  givenname: H.
  surname: Kavas
  fullname: Kavas, H.
  organization: Fatih University, Department of Physics, 34500 Istanbul, Turkey
– sequence: 3
  givenname: and B.
  surname: Aktaş
  fullname: Aktaş, and B.
  organization: Gebze Institute of Technology, Department of Physics, 41400 Kocaeli, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17795426$$DView record in Pascal Francis
BookMark eNqFkM1Lw0AQxRepYFu9es7FY-p-JzmWYqvQqpCKx2WznZXVNAm7Kdr_3pSWIIJ4mjcz7_cOb4QGVV0BQtcETwjG9LYJQU8oxkIygvkZGpJU0rhbskGvMb5AoxDeMeaCJ2SI8nznrTYQgbVg2hDVVbTVbxW0zkSNrxvwrYPubKOw65ZGe93_T6KFqNJV3b26YwnhEp1bXQa4Os0xepnfrWf38fJp8TCbLmPD0pTHHBgALaxlKaVCSssMNZBmTNtUFnQDSZIRMFQKUUBWaGYMLVIhMZObDBNgY3RzzG10MLq0XlfGBdV4t9V-r0jHC05l5-NHn_F1CB6sMq7Vraur1mtXKoLVoUB1KFD1BXbY5BfWJ_8FZEfg05Ww_8etnvN8-pONj6wLLXz1rPYfSiYsEer1caHYKuH5fDVXa_YNpAiXHg
CitedBy_id crossref_primary_10_1063_1_3676438
crossref_primary_10_1016_j_materresbull_2012_11_023
crossref_primary_10_1016_j_poly_2010_10_028
crossref_primary_10_1080_01411594_2017_1409351
crossref_primary_10_1016_j_poly_2009_06_061
crossref_primary_10_1109_TMAG_2012_2228471
crossref_primary_10_1021_acsomega_9b02492
crossref_primary_10_4028_www_scientific_net_SSP_241_69
crossref_primary_10_1007_s10948_012_1972_8
crossref_primary_10_1016_j_physb_2008_07_002
crossref_primary_10_1021_nl200136j
crossref_primary_10_1016_j_jallcom_2007_07_121
crossref_primary_10_1016_j_jmmm_2011_10_030
crossref_primary_10_1103_PhysRevB_98_054401
crossref_primary_10_1016_j_jallcom_2015_03_203
crossref_primary_10_1016_j_matchemphys_2013_02_033
crossref_primary_10_1016_j_rinp_2017_12_062
crossref_primary_10_1016_j_scient_2012_10_013
crossref_primary_10_1111_jace_12317
crossref_primary_10_1016_j_heliyon_2024_e25511
crossref_primary_10_1140_epjp_s13360_021_01737_w
crossref_primary_10_1016_j_jmmm_2014_02_072
crossref_primary_10_1016_j_jallcom_2013_04_206
crossref_primary_10_1016_j_jallcom_2023_170589
crossref_primary_10_1007_s11051_010_9898_1
crossref_primary_10_1103_PhysRevApplied_22_044082
crossref_primary_10_1016_j_matchemphys_2010_03_080
crossref_primary_10_1007_s00396_014_3357_y
crossref_primary_10_1016_j_ceramint_2012_01_001
crossref_primary_10_4236_msa_2013_47052
crossref_primary_10_1016_j_jmmm_2009_01_008
crossref_primary_10_1007_s10948_014_2707_9
crossref_primary_10_1016_j_physb_2016_08_011
crossref_primary_10_1016_j_ssc_2020_114146
crossref_primary_10_1016_j_jmmm_2009_11_018
crossref_primary_10_1088_0022_3727_42_24_245301
crossref_primary_10_1016_j_ceramint_2012_11_004
crossref_primary_10_1002_adfm_201403436
crossref_primary_10_1016_j_ceramint_2012_05_055
crossref_primary_10_1016_j_jmmm_2012_06_031
crossref_primary_10_1016_j_materresbull_2011_11_011
crossref_primary_10_1007_s11664_016_4636_9
crossref_primary_10_1016_j_colsurfa_2021_127622
crossref_primary_10_1063_1_4983849
crossref_primary_10_1007_s10854_018_00640_y
crossref_primary_10_1134_S0021364008150071
crossref_primary_10_1016_j_jmmm_2014_02_052
crossref_primary_10_1007_s10948_022_06321_6
crossref_primary_10_1007_s10853_015_9324_2
crossref_primary_10_1007_s10948_012_1772_1
crossref_primary_10_1016_j_materresbull_2012_12_028
crossref_primary_10_1016_j_jallcom_2008_04_101
crossref_primary_10_1007_s10854_017_8308_1
Cites_doi 10.1016/0304-8853(95)01039-4
10.1016/S0304-8853(02)01026-0
10.1088/0953-8984/12/44/315
10.1016/S0304-8853(01)00347-X
10.1016/0304-8853(95)00341-X
10.1016/j.jmmm.2003.09.005
10.1016/S0031-8914(41)80005-6
10.1016/S0022-3697(01)00099-3
10.1038/144327b0
10.1016/S0304-8853(99)00808-2
10.1063/1.1746466
10.1016/j.physb.2004.09.103
10.1016/S0040-6090(97)00311-8
10.1016/S0304-8853(03)00486-4
10.1016/j.jmmm.2005.03.017
10.1016/S0304-8853(02)00044-6
10.1016/S0304-8853(97)01165-7
10.1016/0304-8853(95)00365-7
10.1002/pssb.200440046
10.1016/S0304-8853(99)00347-9
10.1016/S0304-8853(00)01224-5
10.1016/S0304-8853(00)01255-5
10.1016/S0304-8853(02)01077-6
ContentType Journal Article
Conference Proceeding
Copyright Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2006 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2006 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/pssa.200563104
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6319
EndPage 1601
ExternalDocumentID 17795426
10_1002_pssa_200563104
PSSA200563104
ark_67375_WNG_3M74SFMF_T
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
GYQRN
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
IQODW
ID FETCH-LOGICAL-c3884-4e3ee2bff3822566f3c2ce893af86b2de7791ec2655be9ba3cc2b856036d901e3
IEDL.DBID DR2
ISSN 1862-6300
IngestDate Wed Apr 02 08:08:39 EDT 2025
Tue Jul 01 02:07:36 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Wed Jan 22 16:40:43 EST 2025
Wed Oct 30 09:55:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Fluctuations
Line shape
Line widths
Magnetic moments
Superparamagnetism
Magnetic susceptibility
g-factor
Nanoparticles
Magnetite
Domain structure
Temperature effects
Magnetic anisotropy
Magnetic domains
Iron oxides
Resonance technique
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3884-4e3ee2bff3822566f3c2ce893af86b2de7791ec2655be9ba3cc2b856036d901e3
Notes istex:4880FDA7BDB96B8193D2BAC711C54A559983EAAE
ArticleID:PSSA200563104
ark:/67375/WNG-3M74SFMF-T
PageCount 7
ParticipantIDs pascalfrancis_primary_17795426
crossref_citationtrail_10_1002_pssa_200563104
crossref_primary_10_1002_pssa_200563104
wiley_primary_10_1002_pssa_200563104_PSSA200563104
istex_primary_ark_67375_WNG_3M74SFMF_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2006
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: May 2006
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Physica status solidi. A, Applications and materials science
PublicationTitleAlternate phys. stat. sol. (a)
PublicationYear 2006
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
References Juh-Tzeng Lue, J. Phys. Chem. Solids 62, 1599 (2001).
D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed, J. Magn. Magn. Mater. 225, 256 (2001).
E. J. W. Verwey, P. W. Haayman, and F. C. Romeijn, J. Chem. Phys. 15, 181 (1947).
J. Popplewell and L. Sakhnini, J. Magn. Magn. Mater. 149, 72 (1995).
B. Aktas, Thin Solid Films 307, 250 (1997).
L. Horng, G. Chern, M. C. Chen, P. C. Kang, and D. S. Lee, J. Magn. Magn. Mater. 270-273, 389 (2004).
R. Berger, J. Bissey, J. Kliava, H. Daubric, and C. Estournes, J. Magn. Magn. Mater. 234, 535 (2001).
V. I. Nikolaev, T. A. Bushina, and Kim Eng Chan, J. Magn. Magn. Mater. 213, 213 (2000).
Y. Köseoğlu, F. Yıldız, J. V. Yakhmi, J. Qin, X. Chen, and B. Aktaş, J. Magn. Magn. Mater. 258/259, 416 (2003).
Y. Köseoğlu, F. Yıldız, G. Salazar-Alvarez, M. Toprak, M. Muhammed, and B. Aktaş, phys. stat. sol. (b) 242-248, 1712 (2005).
M. F. Hansen and S. Morup, J. Magn. Magn. Mater. 184, 262 (1998).
P. Brahma, S. Banerjee, D. Das, P. K. Mukhopadhyay, S. Chatterjee, A. K. Nigam, and D. Chakravorty, J. Magn. Magn. Mater. 246, 162 (2002).
E. J. W. Verwey, Nature 144, 327 (1939).
D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, and M. Muhammed, J. Magn. Magn. Mater. 255, 30 (2001).
E. J. W. Verwey and P. W. Haayman, Physica 8, 979 (1941).
E. De Biasi, R. D. Zysler, C. A. Ramos, and H. Romero, J. Magn. Magn. Mater. 294, e87 (2005).
R. H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999).
R. W. Chantrell, G. N. Coverdale, M. El Hilo, and K. O'Grady, J. Magn. Magn. Mater. 157/158, 250 (1996).
K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).
R. D. Zysler, H. Romero, C. A. Ramos, E. De Biasi, and D. Fiorani, J. Magn. Magn. Mater. 266, 233 (2003).
R. Berger, J. C. Bissey, and J. Kliava, J. Phys.: Condens. Matter 12, 9347 (2000).
E. De Biasi, C. A. Ramos, R. D. Zysler, and H. Romero, Physica B 354, 286 (2004).
Y. Köseoğlu, R. Yılgın, J. V. Yakhmi, J. Qin, X. Chen, and B. Aktaş, J. Magn. Magn. Mater. 258/259, 141 (2003).
2004; 354
2001; 234
2001; 255
2005; 294
1997; 307
1941; 8
2000; 213
2000; 12
2002; 246
1947; 15
1939; 144
1995; 149
2004; 270–273
1999; 200
1996; 157/158
2005; 242–248
2003; 266
2001; 225
2001; 62
1998; 184
2003; 258/259
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_22_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_10_2
e_1_2_1_21_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_24_2
e_1_2_1_14_2
e_1_2_1_25_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Y. Köseoğlu, R. Yılgın, J. V. Yakhmi, J. Qin, X. Chen, and B. Aktaş, J. Magn. Magn. Mater. 258/259, 141 (2003).
– reference: R. D. Zysler, H. Romero, C. A. Ramos, E. De Biasi, and D. Fiorani, J. Magn. Magn. Mater. 266, 233 (2003).
– reference: E. J. W. Verwey, P. W. Haayman, and F. C. Romeijn, J. Chem. Phys. 15, 181 (1947).
– reference: R. W. Chantrell, G. N. Coverdale, M. El Hilo, and K. O'Grady, J. Magn. Magn. Mater. 157/158, 250 (1996).
– reference: K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).
– reference: Y. Köseoğlu, F. Yıldız, G. Salazar-Alvarez, M. Toprak, M. Muhammed, and B. Aktaş, phys. stat. sol. (b) 242-248, 1712 (2005).
– reference: B. Aktas, Thin Solid Films 307, 250 (1997).
– reference: J. Popplewell and L. Sakhnini, J. Magn. Magn. Mater. 149, 72 (1995).
– reference: P. Brahma, S. Banerjee, D. Das, P. K. Mukhopadhyay, S. Chatterjee, A. K. Nigam, and D. Chakravorty, J. Magn. Magn. Mater. 246, 162 (2002).
– reference: R. H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999).
– reference: D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, and M. Muhammed, J. Magn. Magn. Mater. 255, 30 (2001).
– reference: M. F. Hansen and S. Morup, J. Magn. Magn. Mater. 184, 262 (1998).
– reference: D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed, J. Magn. Magn. Mater. 225, 256 (2001).
– reference: E. J. W. Verwey, Nature 144, 327 (1939).
– reference: E. J. W. Verwey and P. W. Haayman, Physica 8, 979 (1941).
– reference: Y. Köseoğlu, F. Yıldız, J. V. Yakhmi, J. Qin, X. Chen, and B. Aktaş, J. Magn. Magn. Mater. 258/259, 416 (2003).
– reference: V. I. Nikolaev, T. A. Bushina, and Kim Eng Chan, J. Magn. Magn. Mater. 213, 213 (2000).
– reference: Juh-Tzeng Lue, J. Phys. Chem. Solids 62, 1599 (2001).
– reference: E. De Biasi, C. A. Ramos, R. D. Zysler, and H. Romero, Physica B 354, 286 (2004).
– reference: R. Berger, J. Bissey, J. Kliava, H. Daubric, and C. Estournes, J. Magn. Magn. Mater. 234, 535 (2001).
– reference: R. Berger, J. C. Bissey, and J. Kliava, J. Phys.: Condens. Matter 12, 9347 (2000).
– reference: L. Horng, G. Chern, M. C. Chen, P. C. Kang, and D. S. Lee, J. Magn. Magn. Mater. 270-273, 389 (2004).
– reference: E. De Biasi, R. D. Zysler, C. A. Ramos, and H. Romero, J. Magn. Magn. Mater. 294, e87 (2005).
– volume: 144
  start-page: 327
  year: 1939
  publication-title: Nature
– volume: 258/259
  start-page: 416
  year: 2003
  publication-title: J. Magn. Magn. Mater.
– volume: 213
  start-page: 213
  year: 2000
  publication-title: J. Magn. Magn. Mater.
– volume: 266
  start-page: 233
  year: 2003
  publication-title: J. Magn. Magn. Mater.
– volume: 270–273
  start-page: 389
  year: 2004
  publication-title: J. Magn. Magn. Mater.
– volume: 354
  start-page: 286
  year: 2004
  publication-title: Physica B
– volume: 258/259
  start-page: 141
  year: 2003
  publication-title: J. Magn. Magn. Mater.
– volume: 242–248
  start-page: 1712
  year: 2005
  publication-title: phys. stat. sol. (b)
– volume: 294
  start-page: e87
  year: 2005
  publication-title: J. Magn. Magn. Mater.
– volume: 149
  start-page: 174
  year: 1995
  publication-title: J. Magn. Magn. Mater.
– volume: 255
  start-page: 30
  year: 2001
  publication-title: J. Magn. Magn. Mater.
– volume: 12
  start-page: 9347
  year: 2000
  publication-title: J. Phys.: Condens. Matter
– volume: 246
  start-page: 162
  year: 2002
  publication-title: J. Magn. Magn. Mater.
– volume: 15
  start-page: 181
  year: 1947
  publication-title: J. Chem. Phys.
– volume: 62
  start-page: 1599
  year: 2001
  publication-title: J. Phys. Chem. Solids
– volume: 225
  start-page: 256
  year: 2001
  publication-title: J. Magn. Magn. Mater.
– volume: 307
  start-page: 250
  year: 1997
  publication-title: Thin Solid Films
– volume: 234
  start-page: 535
  year: 2001
  publication-title: J. Magn. Magn. Mater.
– volume: 184
  start-page: 262
  year: 1998
  publication-title: J. Magn. Magn. Mater.
– volume: 8
  start-page: 979
  year: 1941
  publication-title: Physica
– volume: 149
  start-page: 72
  year: 1995
  publication-title: J. Magn. Magn. Mater.
– volume: 200
  start-page: 359
  year: 1999
  publication-title: J. Magn. Magn. Mater.
– volume: 157/158
  start-page: 250
  year: 1996
  publication-title: J. Magn. Magn. Mater.
– ident: e_1_2_1_12_2
  doi: 10.1016/0304-8853(95)01039-4
– ident: e_1_2_1_23_2
  doi: 10.1016/S0304-8853(02)01026-0
– ident: e_1_2_1_17_2
  doi: 10.1088/0953-8984/12/44/315
– ident: e_1_2_1_16_2
  doi: 10.1016/S0304-8853(01)00347-X
– ident: e_1_2_1_4_2
  doi: 10.1016/0304-8853(95)00341-X
– ident: e_1_2_1_20_2
  doi: 10.1016/j.jmmm.2003.09.005
– ident: e_1_2_1_21_2
  doi: 10.1016/S0031-8914(41)80005-6
– ident: e_1_2_1_14_2
  doi: 10.1016/S0022-3697(01)00099-3
– ident: e_1_2_1_3_2
  doi: 10.1038/144327b0
– ident: e_1_2_1_13_2
  doi: 10.1016/S0304-8853(99)00808-2
– ident: e_1_2_1_8_2
– ident: e_1_2_1_22_2
  doi: 10.1063/1.1746466
– ident: e_1_2_1_18_2
  doi: 10.1016/j.physb.2004.09.103
– ident: e_1_2_1_11_2
  doi: 10.1016/S0040-6090(97)00311-8
– ident: e_1_2_1_25_2
  doi: 10.1016/S0304-8853(03)00486-4
– ident: e_1_2_1_10_2
  doi: 10.1016/j.jmmm.2005.03.017
– ident: e_1_2_1_19_2
  doi: 10.1016/S0304-8853(02)00044-6
– ident: e_1_2_1_15_2
  doi: 10.1016/S0304-8853(97)01165-7
– ident: e_1_2_1_5_2
  doi: 10.1016/0304-8853(95)00365-7
– ident: e_1_2_1_6_2
  doi: 10.1002/pssb.200440046
– ident: e_1_2_1_2_2
  doi: 10.1016/S0304-8853(99)00347-9
– ident: e_1_2_1_9_2
  doi: 10.1016/S0304-8853(00)01224-5
– ident: e_1_2_1_7_2
  doi: 10.1016/S0304-8853(00)01255-5
– ident: e_1_2_1_24_2
  doi: 10.1016/S0304-8853(02)01077-6
SSID ssj0045471
Score 2.023795
Snippet Superparamagnetic nanoparticles of magnetite (Fe3O4) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room...
Superparamagnetic nanoparticles of magnetite (Fe 3 O 4 ) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 1595
SubjectTerms 75.50.Bb
75.50.Tt
75.50.Vv
75.75.+a
76.30.Da
76.50.+g
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Diamagnetism, paramagnetism and superparamagnetism
Exact sciences and technology
Magnetic properties and materials
Magnetic properties of nanostructures
Physics
Title Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles
URI https://api.istex.fr/ark:/67375/WNG-3M74SFMF-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.200563104
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iCL54F-dl5EH0qbukTdo9DnEOYUPshnsrSZr4MO3GuoH46z2n7ToniKBvDU3a5pyk50v48h1CrmIjhYBY4HDNmeMZ4ztKxMIRcUP7EuIHkxnLty-6Q-9hxEdfTvHn-hDlhhvOjOx_jRNcqrS-Eg2dpmmuGyQAoaAgKBK2EBU9lfpRKFaVrbgAtjuoLbVUbWyw-nrztai0hQZ-R5akTMFQNs9wsY5es_DT2SNy-eE562RcW8xVTX9803T8T8_2yW6BTWk7H0wHZMMkh2Q744jq9IiE4WJmpTa04IDQSULf5EuCxyDpFDf1Z6jOSieWpgsooKp4eb-4mBuayAQW6gUf75gMO3eD265T5GRwtBsEHnjTNYYpa11AFgAFrauZNgB6pA2EYrHx_VbTaCY4V6alpKs1UwHAKlfEAD2Me0I2k0liTgn1hI51swUNgxjz3EkP1jo8ALRvGzw2tkKcpU8iXQiWY96M1yiXWmYRGioqDVUhN2X9aS7V8WPN68zFZTU5GyPBzefRc_8-cnu-F3Z6nWhQIdW1MbB6LnSTA7ipEJZ58pcXRo9h2C5LZ39pdE528t0f5FpekM35bGEuAQ_NVTUb858wKgMq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7aD6HtAvvBRBkMH9A4ZWud2EmPFdB1bK0Q6TRulu3YO4ylVdNKiL9-7yVpqiIhpO0WK3YSv2fHn58-fw_gY-a0lLgWBMIKHkTOxYGRmQxk1raxxvWD65LlO5KDm-jbT7FkE9JZmEofogm40cwo_9c0wSkgfb5SDZ0WRSUcJBGiRJuwTWm9KYnBlx-NghTJVZV7LgTuAalLLXUb2_x8vf3aurRNJv5NPEldoKl8leNiHb-WC1D_FZjlp1e8k_uzxdyc2T9_qTo-q2978LKGp6xXjad92HD5AbwoaaK2OIQ0Xcy8to7VNBA2ydmDvsvpJCSbUlx_RgKtbOJZscACCYs39-uLuWO5znGvXlPyXsNN_-v48yCo0zIENkySCB0aOseN9yGCC0SDPrTcOsQ92ifS8MzFcbfjLJdCGNc1OrSWmwSRVSgzRB8uPIKtfJK7N8AiaTPb6WLDJKNUdzrC7Y5IEPD7tsicb0GwdIqytWY5pc74pSq1Za7IUKoxVAs-NfWnlVrHP2uelj5uqunZPXHcYqFuRxcqHMZR2h_21bgFJ2uDYPVc7KZAfNMCXrryPy9U39O015TePqXRB9gZjIfX6vpydHUMu1UwiKiX72BrPlu49wiP5uaknACPWxgHRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xEIgLr90V5ekDglOgOLGTHisgvCtEQMvNcvzYA5BWTSshfj3jJE0pEkJabrFiJ_GMnflsff4GYFcbyTnGAo8pRr3AmNBLueYe100VSowfVBYs3w4_fwguH9njh1P8pT5EveHmZkbxv3YTvKft4Vg0tJfnpW4QR4QSTMNswHHGOFh0VwtIObWqYsmFuN1z4lIj2cYmPZxsPxGWZp2FXx1NUuZoKVumuJiEr0X8iZdAjr68pJ08HQwH6YF6-yTq-JOuLcNiBU5JuxxNKzBlslWYK0iiKv8FSTLsW6kMqUggpJuRF_kvc-cgSc_t6vedPCvpWpIPseBkxev71cXAkExmuFKvCHm_4SE-vT8-96qkDJ7yoyhAd_rG0NRaH6EFYkHrK6oMoh5pI55SbcKwdWQU5YylppVKXymaRoirfK4Rexj_D8xk3cysAQm40uqohQ0j7RLdyQAXOyxCuG-bTBvbAG_kE6EqxXKXOONZlFrLVDhDidpQDdiv6_dKrY4va-4VLq6ryf6TY7iFTPztnAn_JgyS-CYW9w3YnhgD4-diNxmimwbQwpPfvFDcJkm7Lq3_T6MdmL89icX1RedqAxbKnSDHu9yEmUF_aLYQGw3S7WL4vwNaEgX8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.atitle=Surface+effects+on+magnetic+properties+of+superparamagnetic+magnetite+nanoparticles&rft.au=K%C3%96SEOGLU%2C+Y&rft.au=KAVAS%2C+H&rft.au=AKTAS%2C+B&rft.date=2006-05-01&rft.pub=Wiley-VCH&rft.issn=1862-6300&rft.volume=203&rft.issue=7&rft.spage=1595&rft.epage=1601&rft_id=info:doi/10.1002%2Fpssa.200563104&rft.externalDBID=n%2Fa&rft.externalDocID=17795426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon