Quantitative phosphoproteomics of lectin receptor‐like kinase VI.4 dependent abscisic acid response in Arabidopsis thaliana

Lectin receptor‐like kinases (LecRKs) play important roles in the responses to adverse environment stress. Abscisic acid (ABA) is a plant hormone involved in plant growth, development and adverse environmental stress responses. Although some studies of ABA response LecRK genes have been reported, th...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 165; no. 4; pp. 728 - 745
Main Authors Zhang, Cheng, Guo, Xinhong, Xie, Huali, Li, Jinyan, Liu, Xiaoqian, Zhu, Baode, Liu, Shucan, Li, Huili, Li, Meiling, He, Mingqi, Chen, Ping
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lectin receptor‐like kinases (LecRKs) play important roles in the responses to adverse environment stress. Abscisic acid (ABA) is a plant hormone involved in plant growth, development and adverse environmental stress responses. Although some studies of ABA response LecRK genes have been reported, the molecular mechanisms of LecRKs regulation of downstream pathways under ABA induction are not well understood. The present study showed that LecRK‐VI.4 responded to ABA and negatively regulated stomatal closure. Here, a quantitative phosphoproteomics approach based on mass spectrometry was employed to study the roles of LecRK‐VI.4 in the ABA signaling pathway. Metal oxide affinity beads and C18 chromatography were used for phosphopeptide enrichment and separation. The isobaric tags for relative and absolute quantitation were used for profiling the phosphoproteome of mutant lecrk‐vi.4‐1 and wild‐type Col‐0 Arabidopsis under normal growth conditions or ABA treatments. In total, 475 unique phosphopeptides were quantified, including 81 phosphopeptides related to LecRK‐VI.4 regulation. Gene ontology, protein–protein interaction and motif analysis were performed. The bioinformatics data showed that phosphorylated proteins regulated by LecRK‐VI.4 had close relations with factors of stomatal function, which included aquaporin activity, H+ pump activity and the Ca2+ concentration in the cytoplasm. These data have expanded our understanding of how LecRK‐VI.4 regulates ABA‐mediated stomatal movements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9317
1399-3054
DOI:10.1111/ppl.12763