Ring opening of epoxidized methyl or ethyl oleate by alkyl glycosides
Epoxidized methyl or ethyl oleate were used as models of FAtty Methyl Esters to explore their functionalization via ring opening of the internal epoxide by alkyl glycosides. Overcoming solubility issues, medium to long‐chain alkyl glucosides gave better results than methyl glucoside. Er(OTf)3 turned...
Saved in:
Published in | European journal of lipid science and technology Vol. 119; no. 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2017
Wiley-VCH Verlag [2000-....] |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Epoxidized methyl or ethyl oleate were used as models of FAtty Methyl Esters to explore their functionalization via ring opening of the internal epoxide by alkyl glycosides. Overcoming solubility issues, medium to long‐chain alkyl glucosides gave better results than methyl glucoside. Er(OTf)3 turned out to catalyze at room temperature the selective formation of hydroxyalkylethers with good yields versus transesterification, despite the concomitant formation of fatty ketones. A brief scope of the reaction, using several available alkyl glycosides, suggests that the strategy can easily lead to new highly functionnalized amphiphilic compounds, potential precursors for biobased materials.
Practical applications: Interested in the formation of original high‐value intermediates from renewable materials, we tackled the reaction of unprotected carbohydrates and unsaturated vegetal oils featuring an internal epoxide. After ring‐opening, the obtained highly functionalized polyols are potential precursors to produce new biobased polymers, lubricants or surface‐active compounds for high‐value cosmetic or biopharmaceutical formulations.
The formation of hydroxyalkylethers from epoxidized fatty esters and alkyl glycosides are catalyzed by Er(OTf)3 at room temperature with good yields and high selectivity versus transesterification.
The formation of hydroxyalkylethers from epoxidized fatty esters and alkyl glycosides are catalyzed by Er(OTf)3 at room temperature with good yields and high selectivity versus transesterification. |
---|---|
ISSN: | 1438-7697 1438-9312 |
DOI: | 10.1002/ejlt.201600413 |