Investigation of star formation toward the Sharpless 155 H II region

We present a comprehensive study of star formation toward the H II re- gion Sharpless 155 ($155). Star-formation activities therein were investigated based on multi-wavelength data from optical to the far-infrared. The surface density distri- bution of selected 2MASS sources toward S 155 indicates t...

Full description

Saved in:
Bibliographic Details
Published inResearch in astronomy and astrophysics Vol. 14; no. 10; pp. 1269 - 1278
Main Authors Huang, Ya-Fang, Li, Jin-Zeng, Rector, Travis A., Fan, Zhou
Format Journal Article
LanguageEnglish
Published 01.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a comprehensive study of star formation toward the H II re- gion Sharpless 155 ($155). Star-formation activities therein were investigated based on multi-wavelength data from optical to the far-infrared. The surface density distri- bution of selected 2MASS sources toward S 155 indicates the existence of a compact cluster, which is spatially consistent with the position of the exciting source of the Htt region, HD 217086. A sample of more than 200 sources with excessive emission in the infrared were selected based on their 2MASS color indices. The spatial distri- bution of the sample sources reveals the existence of three young subclusters in this region, among which subcluster A is spatially coincident with the bright rim of the H II region. In addition, photometric data from the WISE survey were used to identify and classify young stellar objects (YSOs). To further explore the evolutionary stages of the candidate YSOs, we fit the spectral energy distributions of 44 sources, which led to the identification of 14 Class I, 27 Class II and 3 Class Ⅲ YSOs. The spatial distribu- tion of the classified YSOs at different evolutionary stages presents a spatiotemporal gradient, which is consistent with a scenario of sequential star formation. On the other hand, Herschel PACS observations toward the interface between S 155 and the ambi- ent molecular cloud disclose an arc-shaped dust layer, the origin of which could be attributed to the UV dissipation from early type stars, e.g. HD 217061, in S155. Four dusty cores were revealed by the Herschel data, which hints at new generations of star formation.
Bibliography:11-5721/P
ISM; H II regions -- stars;formation -- stars; pre-main sequence --infrared; stars
We present a comprehensive study of star formation toward the H II re- gion Sharpless 155 ($155). Star-formation activities therein were investigated based on multi-wavelength data from optical to the far-infrared. The surface density distri- bution of selected 2MASS sources toward S 155 indicates the existence of a compact cluster, which is spatially consistent with the position of the exciting source of the Htt region, HD 217086. A sample of more than 200 sources with excessive emission in the infrared were selected based on their 2MASS color indices. The spatial distri- bution of the sample sources reveals the existence of three young subclusters in this region, among which subcluster A is spatially coincident with the bright rim of the H II region. In addition, photometric data from the WISE survey were used to identify and classify young stellar objects (YSOs). To further explore the evolutionary stages of the candidate YSOs, we fit the spectral energy distributions of 44 sources, which led to the identification of 14 Class I, 27 Class II and 3 Class Ⅲ YSOs. The spatial distribu- tion of the classified YSOs at different evolutionary stages presents a spatiotemporal gradient, which is consistent with a scenario of sequential star formation. On the other hand, Herschel PACS observations toward the interface between S 155 and the ambi- ent molecular cloud disclose an arc-shaped dust layer, the origin of which could be attributed to the UV dissipation from early type stars, e.g. HD 217061, in S155. Four dusty cores were revealed by the Herschel data, which hints at new generations of star formation.
Ya-Fang Huang, Jin-Zeng Li, Travis A. Rector and Zhou Fan (1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; 2 University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-4527
2397-6209
DOI:10.1088/1674-4527/14/10/006