Special Sensor Microwave Imager Sounder (SSMIS) Radiometric Calibration Anomalies-Part I: Identification and Characterization

Two calibration anomalies of the Defense Meteorological Satellite Program's (DMSP) Special Sensor Microwave Imager Sounder (SSMIS) radiometer are examined by using several sources of data. Early orbit mode data from the SSMIS are used to create radiometric images of the warm calibration load th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 46; no. 4; pp. 1017 - 1033
Main Authors Kunkee, D.B., Swadley, S.D., Poe, G.A., Ye Hong, Werner, M.F.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two calibration anomalies of the Defense Meteorological Satellite Program's (DMSP) Special Sensor Microwave Imager Sounder (SSMIS) radiometer are examined by using several sources of data. Early orbit mode data from the SSMIS are used to create radiometric images of the warm calibration load that evolve over an entire orbit to elucidate the effects of direct and reflected solar illumination of the warm-load (WL) emissive surface. Analysis of the radiometric gain and apparent WL radiometric brightness temperature observed during the solar intrusion events show the impact of these events on the SSMIS calibration. A graphical simulation of the SSMIS and DMSP spacecraft is used to define the regions where solar intrusion occurs and to characterize the WL anomalous regions for the specific DMSP F-16 orbit. The graphical simulation is also used to determine the cause of additional calibration errors that were identified by using comparisons to numerical weather prediction (NWP) models, as emission from the SSMIS reflector antenna. Mitigation of these calibration anomalies is critical if the operational SSMIS radiometers achieve their full utility in NWP, climate monitoring, forecasting, and other emerging applications. A detailed characterization of the SSMIS calibration provides a basis for this process.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2008.917213