Motion Information via the Nonfixating Eye Can Drive Optokinetic Nystagmus in Strabismus

Strabismic patients can perceptually suppress information from one eye to avoid double vision. However, evidence from prior studies shows that some parts of the visual field of the deviated eye are not suppressed. Our goal here was to investigate whether motion information available only to the devi...

Full description

Saved in:
Bibliographic Details
Published inInvestigative ophthalmology & visual science Vol. 56; no. 11; pp. 6423 - 6432
Main Authors Agaoglu, Sevda, Agaoglu, Mehmet N, Das, Vallabh E
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 01.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Strabismic patients can perceptually suppress information from one eye to avoid double vision. However, evidence from prior studies shows that some parts of the visual field of the deviated eye are not suppressed. Our goal here was to investigate whether motion information available only to the deviated eye can be utilized by the oculomotor system to drive eye movements. Binocular eye movements were acquired in two exotropic monkeys in a dichoptic viewing task in which the fixating eye viewed a stationary spot and the deviated eye viewed a 10° × 10° stationary patch that contained a drifting grating stimulus moving at 10°/s to the right or left for 20 seconds. Spatial location and contrast of the grating were systematically varied in subsequent trials. For each trial, mean slow-phase velocity of the optokinetic nystagmus (OKN) elicited by grating motion was calculated. We found that OKN responses can be elicited by a motion stimulus presented to the foveal region of the deviated eye. Optokinetic nystagmus magnitude varied depending on which eye was viewing the drifting grating and correlated well with fixation preference and fixation stability (indicators of amblyopia). The magnitude of OKN increased for increased relative contrast of the motion stimulus compared to the fixation spot. Our results show that motion information available only to the deviated eye can drive optokinetic eye movements. We conclude that the brain has access to visual information from portions of the deviated eye (including the fovea) in strabismus that it can use to drive eye movements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.15-16923