A Solution to Antifolate Resistance in Group B Streptococcus : Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim

Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B (GBS) to trimethoprim (TMP), an antibiotic to which GBS is int...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 11; no. 2
Main Authors Chambers, Schuyler A, Moore, Rebecca E, Craft, Kelly M, Thomas, Harrison C, Das, Rishub, Manning, Shannon D, Codreanu, Simona G, Sherrod, Stacy D, Aronoff, David M, McLean, John A, Gaddy, Jennifer A, Townsend, Steven D
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 17.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs' mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs. Group B is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Kelly M. Craft, Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.
Schuyler A. Chambers and Rebecca E. Moore contributed equally to this work. Author order was determined alphabetically.
ISSN:2161-2129
2150-7511
DOI:10.1128/mBio.00076-20