A combined etching process toward robust superhydrophobic SiC surfaces
Large-scale porous SiC was fabricated by a combination of Pt-assisted etching and reactive ion etching. It was found that the surface roughness of combined etchings increased dramatically in comparison with metal-assisted etching or reactive ion etching only. To reduce the surface energy, the porous...
Saved in:
Published in | Nanotechnology Vol. 23; no. 25; p. 255703 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
29.06.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Large-scale porous SiC was fabricated by a combination of Pt-assisted etching and reactive ion etching. It was found that the surface roughness of combined etchings increased dramatically in comparison with metal-assisted etching or reactive ion etching only. To reduce the surface energy, the porous SiC surface was functionalized with perfluorooctyl trichlorosilane, resulting in a superhydrophobic SiC surface with a contact angle of 169.2° and a hysteresis of 2.4°. The superhydrophobicity of the SiC surface showed a good long-term stability in an 85 °C 85% humidity chamber. Such superhydrophobicity was also stable in acidic or basic solutions, and the pH values showed little or no effect on the SiC surface status. In addition, enhancement of porosity-induced photoluminescence intensity was found in the superhydrophobic SiC samples. The robust superhydrophobic SiC surfaces may have a great potential for microfluid device, thermal ground plane, and biosensor applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/23/25/255703 |