Crosstalk-Aware Channel Coding Schemes for Energy Efficient and Reliable NOC Interconnects

Network-on-chip (NOC) is emerging as a revolutionary methodology to integrate numerous intellectual property blocks in a single die. It is the packet switching-based communications backbone that interconnects the components on multicore system-on-chip (SoC). A major challenge that NOC design is expe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 17; no. 11; pp. 1626 - 1639
Main Authors Ganguly, A., Pande, P.P., Belzer, B.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Network-on-chip (NOC) is emerging as a revolutionary methodology to integrate numerous intellectual property blocks in a single die. It is the packet switching-based communications backbone that interconnects the components on multicore system-on-chip (SoC). A major challenge that NOC design is expected to face is related to the intrinsic unreliability of the interconnect infrastructure under technology limitations. By incorporating error control coding schemes along the interconnects, NOC architectures are able to provide correct functionality in the presence of different sources of transient noise and yet have lower overall energy dissipation. In this paper, designs of novel joint crosstalk avoidance and triple-error-correction/quadruple-error-detection codes are proposed, and their performance is evaluated in different NOC fabrics. It is demonstrated that the proposed codes outperform other existing coding schemes in making NOC fabrics reliable and energy efficient, with lower latency.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2008.2005722