Power Scaling of Ytterbium-doped Fiber Superfluorescent Sources

Power scaling of ytterbium-doped fiber superfluorescent sources based on single-stage and two-stage cladding-pumped fiber configurations is reported. For the single-stage configuration, a novel fiber-end termination scheme was employed to suppress laser oscillation in combination with a simple all-f...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 13; no. 3; pp. 580 - 587
Main Authors Pu Wang, Sahu, J.K., Clarkson, W.A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Power scaling of ytterbium-doped fiber superfluorescent sources based on single-stage and two-stage cladding-pumped fiber configurations is reported. For the single-stage configuration, a novel fiber-end termination scheme was employed to suppress laser oscillation in combination with a simple all-fiber scheme for achieving a predominantly single-ended output. The fiber was cladding-pumped by a diode stack at 976 nm and yielded ~62 W of single-ended amplified spontaneous emission output for 119 W of launched pump power, limited by the onset of parasitic lasing. At pump powers in excess of 40 W, the slope efficiency with respect to the launched pump power was 67%. The emission spectrum spanned the wavelength range from 1030 to 1100 nm and the bandwidth (FWHM) was 12 nm. Scaling to higher power levels was demonstrated using a two-stage cladding-pumped fiber configuration comprising of a low-power fiber superfluorescent seed source and a high-power amplifier. The two-stage source yielded 122 W of amplified spontaneous emission output (limited by available pump power) in a beam with M 2 ap 2.1. The slope efficiency for the amplifier with respect to the launched pump power was 77%. The prospects for further improvement in performance and output power are considered.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2007.897181