Deep learning based low-dose synchrotron radiation CT reconstruction

Synchrotron radiation sources are widely used in various fields, among which computed tomography (CT) is one of the most important. The amount of effort expended by the operator varies depending on the subject. If the number of angles needed to be used can be greatly reduced under the condition of s...

Full description

Saved in:
Bibliographic Details
Published inEPJ Web of conferences Vol. 251; p. 3058
Main Authors Li, Ling, Hu, Yu
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synchrotron radiation sources are widely used in various fields, among which computed tomography (CT) is one of the most important. The amount of effort expended by the operator varies depending on the subject. If the number of angles needed to be used can be greatly reduced under the condition of similar imaging effects, the working time and workload of the experimentalists will be greatly reduced. However, decreasing the sampling angle can produce serious artifacts and blur the details. We try to use a deep learning model which can build high quality reconstruction sparse data sampling from the angle of the image and ResAttUnet are put forward. ResAttUnet is roughly a symmetrical U-shaped network that incorporates similar mechanisms to ResNet and attention. In addition, the mixed precision is adopted to reduce the demand for video memory of the model and training time.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/202125103058