Multimodal vibration damping using energy transfer
The vibration control using the piezoelectric elements is an area interesting for many industrial sectors. Within this framework, we propose an improved control technique based in synchronized switch damping by energy transfer. It realizes the energy transfer using storage capacitances and switches...
Saved in:
Published in | Optical and quantum electronics Vol. 48; no. 5; pp. 1 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The vibration control using the piezoelectric elements is an area interesting for many industrial sectors. Within this framework, we propose an improved control technique based in synchronized switch damping by energy transfer. It realizes the energy transfer using storage capacitances and switches synchronized with the structure modal coordinates or piezo-voltages. These switches produce either a voltage inversion on the piezoelements for damping or energy extraction purposes, or oscillating discharges between the piezoelements and the storage capacitances for energy transfer. This new method has an improvement in the modal damping technology SSDI-Max. Their performance is simulated with a model representative of a clamped plate with four piezoelectric elements coupled with the structural modes while taking into account realistic transfer losses. The damping effect is simulated in multi-modal with pulse or multi-sine excitation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-016-0467-4 |