Microfluidics-driven high-throughput phenotyping and screening in synthetic biology: from single cells to cell-free systems
The interdisciplinary nature of synthetic biology merges engineering principles with biology and provides innovative solutions for issues in the biomanufacturing industry. To develop industrially applicable biocatalysts and/or microbial cell factories, a design-build-test-learn cycle-based iterative...
Saved in:
Published in | Biotechnology and bioprocess engineering Vol. 29; no. 1; pp. 25 - 33 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Society for Biotechnology and Bioengineering
01.02.2024
Springer Nature B.V 한국생물공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The interdisciplinary nature of synthetic biology merges engineering principles with biology and provides innovative solutions for issues in the biomanufacturing industry. To develop industrially applicable biocatalysts and/or microbial cell factories, a design-build-test-learn cycle-based iterative process is necessary, which is often time-consuming and labor-intensive. The integration of microfluidic technologies into synthetic biology can accelerate these processes, particularly for achieving high-throughput phenotyping and screening. In this review, we examine the potential of microfluidic technologies to revolutionize synthetic biology. Although commercial microfluidics demonstrate superior throughput for single-cell assays, their application can be limited, for example, in cases where products are retained inside the cells. Droplet microfluidics, on the other hand, is a rather flexible platform and shows high diversity in single-cell, cell-to-cell interaction-based, and cell-free reaction-based analyses. By examining previous studies, we have summarized the potential of microfluidic technologies to foster sustainable biomanufacturing and advanced biological engineering. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1226-8372 1976-3816 |
DOI: | 10.1007/s12257-024-00016-6 |