Robust OFDM receivers for dispersive time-varying channels: equalization and channel acquisition

In orthogonal frequency-division multiplexing, time variations of a multipath channel lead to a loss of orthogonality between the subcarriers, and thereby limit the achievable throughput. This paper proposes a general framework for a controlled removal of intercarrier interference (ICI) and channel...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 52; no. 4; pp. 572 - 583
Main Authors Gorokhov, A., Linnartz, J.-P.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In orthogonal frequency-division multiplexing, time variations of a multipath channel lead to a loss of orthogonality between the subcarriers, and thereby limit the achievable throughput. This paper proposes a general framework for a controlled removal of intercarrier interference (ICI) and channel acquisition. The core idea behind our method is to use a finite power series expansion for the time-varying frequency response, along with the known statistical properties of mobile radio channels. Channel acquisition and ICI removal are accomplished in the frequency domain and allow for any desired tradeoff between the residual ICI level, the required training for channel acquisition, and processing complexity. The proposed approach enables a high spectral efficiency (64-quadrature amplitude modulation mode) of digital video broadcasting-terrestrial in highly mobile environments.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2004.826354