Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system

The relevance of correlations between blood oxygenation level dependent (BOLD) signal changes across the brain acquired at rest (resting state networks, or RSN) to functional networks was tested using two quantitative criteria: (1) the localisation of major RSN correlation clusters and the task-rela...

Full description

Saved in:
Bibliographic Details
Published inExperimental brain research Vol. 167; no. 4; pp. 587 - 594
Main Authors De Luca, Marilena, Smith, Stephen, De Stefano, Nicola, Federico, Antonio, Matthews, Paul M.
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.12.2005
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The relevance of correlations between blood oxygenation level dependent (BOLD) signal changes across the brain acquired at rest (resting state networks, or RSN) to functional networks was tested using two quantitative criteria: (1) the localisation of major RSN correlation clusters and the task-related maxima defined in BOLD fMRI signal changes from the same subjects; and (2) the relative hemispheric lateralisation (LI) of BOLD fMRI signal changes in sensorimotor cortex. RSN were defined on the basis of signal changes correlated with that of a "seed" voxel in the primary sensorimotor cortex. We found a generally close spatial correspondence between clusters of correlated BOLD signal change in RSN and activation maxima associated with hand movement. Conventional BOLD fMRI during active hand movement showed the expected wide variation in relative hemispheric lateralisation of LI for sensorimotor cortex across the subjects. There was a good correlation between LIs for the active hand movement task and the RSN (r=0.74, p<0.001). The RSN thus define anatomically relevant regions of motor cortex and change with functionally relevant variations in hemispheric lateralisation of sensorimotor cortical interactions with hand movement.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-005-0059-1