Comparison of electrocoagulation, peroxi-electrocoagulation and peroxi-coagulation processes for treatment of simulated purified terephthalic acid wastewater: Optimization, sludge and kinetic analysis

This study mainly focuses on a comparative study of electrocoagulation (EC), peroxi-electrocoagulation (PEC) and peroxi-coagulation (PC) processes for the treatment of aqueous solution containing major toxic components of purified terephthalic acid wastewater: benzoic acid (BA), terephthalic acid (T...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 35; no. 4; pp. 909 - 921
Main Authors Sandhwar, Vishal Kumar, Prasad, Basheshwar
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2018
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study mainly focuses on a comparative study of electrocoagulation (EC), peroxi-electrocoagulation (PEC) and peroxi-coagulation (PC) processes for the treatment of aqueous solution containing major toxic components of purified terephthalic acid wastewater: benzoic acid (BA), terephthalic acid (TPA), para-toluic acid (p-TA) and phthalic acid (PA). The solution was initially treated by acid treatment method at various pH (2-4) and temperature (15-60 °C). The supernatant was further remediated by EC, PEC and PC methods independently. Process variables such as pH (4-12) and pH (1-5), current density (45.72-228.60 A/m 2 ), electrolyte concentration (0.04-0.08 mol/L), electrode gap (1-3 cm), H 2 O 2 concentration (600-1,000 mg/L) and reaction time (20-100 min) during EC, PEC and PC treatment were effectively optimized through central composite design under Design Expert software. Maximum COD removal of 60.76%, 73.91%, 66.68% with energy consumption (kWh/kg COD removed) of 95.81, 49.58, 69.26 was obtained by EC, PEC and PC treatments, respectively, at optimum conditions. Electrochemical methods were compared by removal capacities, consumption of energy, operating cost, degradation kinetics and sludge characteristics. PEC treatment was found most effective among EC, PEC and PC processes due to its highest removal capacity and lowest energy consumption features.
ISSN:0256-1115
1975-7220
DOI:10.1007/s11814-017-0336-2