Optimal estimation for the satellite attitude using star tracker measurements
An optimal estimation scheme is presented, which determines the satellite attitude using the gyro readings and the star tracker measurements of a commonly used satellite attitude measuring unit. The scheme is mainly based on the exponential Fourier densities that have the desirable closure property...
Saved in:
Published in | Automatica (Oxford) Vol. 22; no. 4; pp. 477 - 482 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Legacy CDMS
Elsevier Ltd
01.07.1986
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An optimal estimation scheme is presented, which determines the satellite attitude using the gyro readings and the star tracker measurements of a commonly used satellite attitude measuring unit. The scheme is mainly based on the exponential Fourier densities that have the desirable closure property under conditioning. By updating a finite and fixed number of parameters, the conditional probability density, which is an exponential Fourier density, is recursively determined. Simulation results indicate that the scheme is more accurate and robust than extended Kalman filtering. It is believed that this approach is applicable to many other attitude measuring units. As no linearization and approximation are necessary in the approach, it is ideal for systems involving high levels of randomness and/or low levels of observability and systems for which accuracy is of overriding importance. |
---|---|
Bibliography: | CDMS Legacy CDMS ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/0005-1098(86)90052-X |