Granulocytes in Ocular HSV-1 Infection: Opposing Roles of Mast Cells and Neutrophils

The contributions of mast cells (MCs) to immunologic defense against pathogens in the eye are unknown. We have characterized pericorneal MCs as tissue-resident innate sentinels and determined their impact on the immune response to herpes simplex virus type-1 (HSV-1), a common ocular pathogen. The im...

Full description

Saved in:
Bibliographic Details
Published inInvestigative ophthalmology & visual science Vol. 56; no. 6; pp. 3763 - 3775
Main Authors Royer, Derek J, Zheng, Min, Conrady, Christopher D, Carr, Daniel J J
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The contributions of mast cells (MCs) to immunologic defense against pathogens in the eye are unknown. We have characterized pericorneal MCs as tissue-resident innate sentinels and determined their impact on the immune response to herpes simplex virus type-1 (HSV-1), a common ocular pathogen. The impact of mast cells on the immune response to HSV-1 infection was investigated using MC-deficient Kit(W-sh) mice. Virus titers, inflammatory cytokine production, eicosanoid profiles, cellular immune responses, and ocular pathology were evaluated and compared with C57BL/6J mice during an acute corneal HSV-1 infection. Corneas of Kit(W-sh) mice have higher viral titers, increased edema, and greater leukocyte infiltration following HSV-1 infection. Following infection, cytokine profiles were slightly elevated overall in Kit(W-sh) mice. Eicosanoid profiles were remarkably different only when comparing uninfected corneas from both groups. Neutrophils within infected corneas expressed HSV-1 antigen, lytic genes, and served as a disease-causing vector when adoptively transferred into immunocompromised animals. Myeloid-derived suppressor cells did not infiltrate into the cornea or suppress the expansion, recruitment, or cytokine production by CD8+ T cells following acute HSV-1 infection. Collectively, these findings provide new insight into host defense in the cornea and the pathogenesis of HSV-1 infection by identifying previously unacknowledged MCs as protective innate sentinels for infection of the ocular surface and reinforcing that neutrophils are detrimental to corneal infection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.15-16900