Application of layout optimization to the design of additively manufactured metallic components

Additive manufacturing (‘3D printing’) techniques provide engineers with unprecedented design freedoms, opening up the possibility for stronger and lighter component designs. In this paper ‘layout optimization’ is used to provide a reference volume and to identify potential design topologies for a g...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 54; no. 5; pp. 1297 - 1313
Main Authors Smith, Christopher J., Gilbert, Matthew, Todd, Iain, Derguti, Fatos
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Additive manufacturing (‘3D printing’) techniques provide engineers with unprecedented design freedoms, opening up the possibility for stronger and lighter component designs. In this paper ‘layout optimization’ is used to provide a reference volume and to identify potential design topologies for a given component, providing a useful alternative to continuum based topology optimization approaches (which normally require labour intensive post-processing in order to realise a practical component). Here simple rules are used to automatically transform a line structure layout into a 3D continuum. Two examples are considered: (i) a simple beam component subject to three-point bending; (ii) a more complex air-brake hinge component, designed for the Bloodhound supersonic car. These components were successfully additively manufactured using titanium Ti-6Al-4V, using the Electron Beam Melting (EBM) process. Also, to verify the efficacy of the process and the mechanical performance of the fabricated specimens, a total of 12 beam samples were load tested to failure, demonstrating that the target design load could successfully be met.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-016-1426-1