Application of layout optimization to the design of additively manufactured metallic components
Additive manufacturing (‘3D printing’) techniques provide engineers with unprecedented design freedoms, opening up the possibility for stronger and lighter component designs. In this paper ‘layout optimization’ is used to provide a reference volume and to identify potential design topologies for a g...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 54; no. 5; pp. 1297 - 1313 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Additive manufacturing (‘3D printing’) techniques provide engineers with unprecedented design freedoms, opening up the possibility for stronger and lighter component designs. In this paper ‘layout optimization’ is used to provide a reference volume and to identify potential design topologies for a given component, providing a useful alternative to continuum based topology optimization approaches (which normally require labour intensive post-processing in order to realise a practical component). Here simple rules are used to automatically transform a line structure layout into a 3D continuum. Two examples are considered: (i) a simple beam component subject to three-point bending; (ii) a more complex air-brake hinge component, designed for the Bloodhound supersonic car. These components were successfully additively manufactured using titanium Ti-6Al-4V, using the Electron Beam Melting (EBM) process. Also, to verify the efficacy of the process and the mechanical performance of the fabricated specimens, a total of 12 beam samples were load tested to failure, demonstrating that the target design load could successfully be met. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-016-1426-1 |