Assessing crop residue cover using shortwave infrared reflectance

Management of crop residues is an important consideration for reducing soil erosion and increasing soil organic carbon. Current methods of measuring residue cover are inadequate for characterizing the spatial variability of residue cover over large fields. The objectives of this research were to det...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 90; no. 1; pp. 126 - 134
Main Authors Daughtry, C.S.T., Hunt, E.R., McMurtrey, J.E.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 15.03.2004
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Management of crop residues is an important consideration for reducing soil erosion and increasing soil organic carbon. Current methods of measuring residue cover are inadequate for characterizing the spatial variability of residue cover over large fields. The objectives of this research were to determine the spectral reflectance of crop residues and soils and to assess the limits of discrimination that can be expected in mixed scenes. Spectral reflectances of dry and wet crop residues plus three diverse soils were measured over the 400–2400 nm wavelength region. Reflectance values for scenes with varying proportions of crop residues and soils were simulated. Additional spectra of scenes with mixtures of crop residues, green vegetation, and soil were also acquired in corn, soybean, and wheat fields with different tillage treatments. The spectra of dry crop residues displayed a broad absorption feature near 2100 nm, associated with cellulose-lignin, that was absent in spectra of soils. Crop residue cover was linearly related ( r 2=0.89) to the Cellulose Absorption Index (CAI), which was defined as the relative depth of this absorption feature. Green vegetation cover in the scene attenuated CAI, but was linearly related to the Normalized Difference Vegetation Index (NDVI, r 2=0.93). A novel method is proposed to assess soil tillage intensity classes using CAI and NDVI. Regional surveys of soil conservation practices that affect soil carbon dynamics may be feasible using advanced multispectral or hyperspectral imaging systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2003.10.023