Data‐enabled predictive control for quadcopters

We study the application of a data‐enabled predictive control (DeePC) algorithm for position control of real‐world nano‐quadcopters. The DeePC algorithm is a finite‐horizon, optimal control method that uses input/output measurements from the system to predict future trajectories without the need for...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 31; no. 18; pp. 8916 - 8936
Main Authors Elokda, Ezzat, Coulson, Jeremy, Beuchat, Paul N., Lygeros, John, Dörfler, Florian
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley and Sons Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the application of a data‐enabled predictive control (DeePC) algorithm for position control of real‐world nano‐quadcopters. The DeePC algorithm is a finite‐horizon, optimal control method that uses input/output measurements from the system to predict future trajectories without the need for system identification or state estimation. The algorithm predicts future trajectories of the quadcopter by linearly combining previously measured trajectories (motion primitives). We illustrate the necessity of a regularized variant of the DeePC algorithm to handle the nonlinear nature of the real‐world quadcopter dynamics with noisy measurements. Simulation‐based analysis is used to gain insights into the effects of regularization, and experimental results validate that these insights carry over to the real‐world quadcopter. Moreover, we demonstrate the reliability of the DeePC algorithm by collecting a new set of input/output measurements for every real‐world experiment performed. The performance of the DeePC algorithm is compared to Model Predictive Control based on a first‐principles model of the quadcopter. The results are demonstrated with a video of successful trajectory tracking of the real‐world quadcopter.
Bibliography:Funding information
Eidgenössische Technische Hochschule Zürich, H2020 European Research Council, OCAL, No. 787845; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, NCCR Automation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Funding information Eidgenössische Technische Hochschule Zürich, H2020 European Research Council, OCAL, No. 787845; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, NCCR Automation
ISSN:1049-8923
1099-1239
1099-1239
DOI:10.1002/rnc.5686