Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR)
The high spatio-temporal variability of soil moisture is the result of atmosphericforcing and redistribution processes related to terrain, soil, and vegetation characteristics.Despite this high variability, many field studies have shown that in the temporal domainsoil moisture measured at specific l...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 8; no. 2; pp. 1174 - 1197 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Molecular Diversity Preservation International (MDPI)
21.02.2008
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The high spatio-temporal variability of soil moisture is the result of atmosphericforcing and redistribution processes related to terrain, soil, and vegetation characteristics.Despite this high variability, many field studies have shown that in the temporal domainsoil moisture measured at specific locations is correlated to the mean soil moisture contentover an area. Since the measurements taken by Synthetic Aperture Radar (SAR)instruments are very sensitive to soil moisture it is hypothesized that the temporally stablesoil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT AdvancedSynthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located inthe Duero basin, Spain. It is found that a time-invariant linear relationship is well suited forrelating local scale (pixel) and regional scale (50 km) backscatter. The observed linearmodel coefficients can be estimated by considering the scattering properties of the terrainand vegetation and the soil moisture scaling properties. For both linear model coefficients,the relative error between observed and modelled values is less than 5 % and thecoefficient of determination (R²) is 86 %. The results are of relevance for interpreting anddownscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT)and passive (SMOS, AMSR-E) instruments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s80201174 |