Marine Plankton-Derived Whitlockite Powder-Based 3D-Printed Porous Scaffold for Bone Tissue Engineering

Powder-based 3D printing is an excellent technique for the fabrication of complex structural shapes. The outstanding bone remodeling capacity of calcium phosphate bioceramics is a desirable characteristic for such fabrication. Whitlockite (WH) is a calcium phosphate-based ceramic that contains Mg io...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 10; p. 3413
Main Authors Baek, Ji-Won, Park, Ho, Kim, Ki-Su, Chun, Sung-Kun, Kim, Beom-Su
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.05.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Powder-based 3D printing is an excellent technique for the fabrication of complex structural shapes. The outstanding bone remodeling capacity of calcium phosphate bioceramics is a desirable characteristic for such fabrication. Whitlockite (WH) is a calcium phosphate-based ceramic that contains Mg ions and possesses good mechanical properties, rapid resorbability, and promotes osteogenesis. The aim of this study was to fabricate 3D-printed scaffolds using marine plankton-derived WH (MP-WH) powder. The surface morphology and composition of the fabricated scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The biocompatibility and osteogenic effects were evaluated using human mesenchymal stem cells. We successfully obtained a 3D porous scaffold using MP-WH. The MP-WH 3D scaffold showed improved compressive strength compared to the tricalcium phosphate (TCP) 3D scaffold. The in vitro results showed that compared with TCP 3D scaffolds, MP-WH 3D scaffolds were biocompatible and enhanced cell proliferation and adhesion. In addition, alkaline phosphatase activity and real-time polymerase chain reaction assays demonstrated that osteoblast differentiation was improved on the MP-WH scaffold. These results suggest that marine plankton-derived WH is useful for fabricating 3D-printed scaffolds for bone tissue engineering applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15103413