Fabrication of 3D Printed Metal Structures by Use of High-Viscosity Cu Paste and a Screw Extruder

Three-dimensional (3D) printing is an important, rapidly growing industry. However, traditional 3D printing technology has problems with some materials. To solve the problem of the limited number of 3D-printable materials, high-viscosity materials and a new method for 3D printing were investigated....

Full description

Saved in:
Bibliographic Details
Published inJournal of electronic materials Vol. 44; no. 3; pp. 836 - 841
Main Authors Hong, Seongik, Sanchez, Cesar, Du, Hanuel, Kim, Namsoo
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.03.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Three-dimensional (3D) printing is an important, rapidly growing industry. However, traditional 3D printing technology has problems with some materials. To solve the problem of the limited number of 3D-printable materials, high-viscosity materials and a new method for 3D printing were investigated. As an example of a high-viscosity material, Cu paste was synthesized and a screw extruder printer was developed to print the paste. As a fundamental part of the research, the viscosity of the Cu paste was measured for different Cu content. The viscosity of the paste increased with increasing Cu content. To print high-viscosity Cu paste, printing conditions were optimized. 3D structures were printed, by use of an extruder and high-viscosity metal paste with appropriate printing conditions, and then heat treated. After sintering, however, approximately 75% shrinkage of the final product was observed. To achieve less shrinkage, the packing factor of the Cu paste was increased by adding more Cu particles. The shrinkage factor decreased as the packing factor increased, and the size of final product was 77% of that expected.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-014-3601-8