Systematic study on deep learning-based plant disease detection or classification

Plant diseases impact extensively on agricultural production growth. It results in a price hike on food grains and vegetables. To reduce economic loss and to predict yield loss, early detection of plant disease is highly essential. Current plant disease detection involves the physical presence of do...

Full description

Saved in:
Bibliographic Details
Published inThe Artificial intelligence review Vol. 56; no. 12; pp. 14955 - 15052
Main Authors Sunil, C. K., Jaidhar, C. D., Patil, Nagamma
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plant diseases impact extensively on agricultural production growth. It results in a price hike on food grains and vegetables. To reduce economic loss and to predict yield loss, early detection of plant disease is highly essential. Current plant disease detection involves the physical presence of domain experts to ascertain the disease; this approach has significant limitations, namely: domain experts need to move from one place to another place which involves transportation cost as well as travel time; heavy transportation charge makes the domain expert not travel a long distance, and domain experts may not be available all the time, and though the domain experts are available, the domain expert(s) may charge high consultation charge which may not be feasible for many farmers. Thus, there is a need for a cost-effective, robust automated plant disease detection or classification approach. In this line, various plant disease detection approaches are proposed in the literature. This systematic study provides various Deep Learning-based and Machine Learning-based plant disease detection or classification approaches; 160 diverse research works are considered in this study, which comprises single network models, hybrid models, and also real-time detection approaches. Around 57 studies considered multiple plants, and 103 works considered a single plant. 50 different plant leaf disease datasets are discussed, which include publicly available and publicly unavailable datasets. This study also discusses the various challenges and research gaps in plant disease detection. This study also highlighted the importance of hyperparameters in deep learning.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0269-2821
1573-7462
DOI:10.1007/s10462-023-10517-0