Effect of Nb and Mo on the Microstructure, Mechanical Properties and Ductility-Dip Cracking of Ni-Cr-Fe Weld Metals

A series of Ni-Cr-Fe welding wires with different Nb and Mo contents were designed to investigate the effect of Nb and Mo on the rnicrostructure, mechanical properties and the ductility-dip cracking susceptibility of the weld metals by optical microscopy (OM), scanning electron microscopy, X-ray dif...

Full description

Saved in:
Bibliographic Details
Published inActa metallurgica sinica : English letters Vol. 29; no. 10; pp. 928 - 939
Main Authors Zhang, Xu, Li, Dian-Zhong, Li, Yi-Yi, Lu, Shan-Ping
Format Journal Article
LanguageEnglish
Published Beijing The Chinese Society for Metals 01.10.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A series of Ni-Cr-Fe welding wires with different Nb and Mo contents were designed to investigate the effect of Nb and Mo on the rnicrostructure, mechanical properties and the ductility-dip cracking susceptibility of the weld metals by optical microscopy (OM), scanning electron microscopy, X-ray diffraction as well as the tensile and impact tests. Results showed that large Laves phases formed and distributed along the interdendritic regions with high Nb or Mo addition. The Cr-carbide (M23C6) was suppressed to precipitate at the grain boundaries with high Nb addition. Tensile testing indicates that the ultimate strength of weld metals increases with Nb or Mo addition. However, the voids formed easily around the large Laves phases in the interdendritic area during tensile testing for the weld metal with high Mo content. It is found that the tensile fractographs of high Mo weld metals show a typical feature of interdendritic fracture. The high Nb or Mo addition, which leads to the formation of large Laves phases, exposes a great weakening effect on the impact toughness of weld metals. In addition, the ductility-dip cracking was not found by OM in the selected cross sections of weld metals with different Nb additions. High Nb addition can eliminate the ductility-dip cracking from the Ni-Cr-Fe weld metals effectively.
Bibliography:Nb; Mo; Laves phase; Microstructure; Mechanical properties
21-1361/TG
A series of Ni-Cr-Fe welding wires with different Nb and Mo contents were designed to investigate the effect of Nb and Mo on the rnicrostructure, mechanical properties and the ductility-dip cracking susceptibility of the weld metals by optical microscopy (OM), scanning electron microscopy, X-ray diffraction as well as the tensile and impact tests. Results showed that large Laves phases formed and distributed along the interdendritic regions with high Nb or Mo addition. The Cr-carbide (M23C6) was suppressed to precipitate at the grain boundaries with high Nb addition. Tensile testing indicates that the ultimate strength of weld metals increases with Nb or Mo addition. However, the voids formed easily around the large Laves phases in the interdendritic area during tensile testing for the weld metal with high Mo content. It is found that the tensile fractographs of high Mo weld metals show a typical feature of interdendritic fracture. The high Nb or Mo addition, which leads to the formation of large Laves phases, exposes a great weakening effect on the impact toughness of weld metals. In addition, the ductility-dip cracking was not found by OM in the selected cross sections of weld metals with different Nb additions. High Nb addition can eliminate the ductility-dip cracking from the Ni-Cr-Fe weld metals effectively.
ISSN:1006-7191
2194-1289
DOI:10.1007/s40195-016-0469-z