Lysine residues 639 and 673 of mouse Ncoa3 are ubiquitination sites for the regulation of its stability

Ncoa3 is a transcriptional coactivator involved in a wide range of biological processes. Regulation of Ncoa3 protein stability is important to control its activity precisely. Here, we found that deleting amino acid residues 614-740 of Ncoa3 enhances the protein expression level. Replacing two lysine...

Full description

Saved in:
Bibliographic Details
Published inActa biochimica et biophysica Sinica Vol. 46; no. 12; pp. 1066 - 1071
Main Authors Mou, Chunlin, Zhang, Yanqin, Zhang, Weiyu, Ding, Yu, Chen, Lingyi
Format Journal Article
LanguageEnglish
Published China 01.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ncoa3 is a transcriptional coactivator involved in a wide range of biological processes. Regulation of Ncoa3 protein stability is important to control its activity precisely. Here, we found that deleting amino acid residues 614-740 of Ncoa3 enhances the protein expression level. Replacing two lysine residues, K639 and K673, within this region by argin- ine, increases the stability of the luciferase fusion protein as well as Ncoa3 protein. When these two lysine residues are mutated to arginine, the overall ubiquitination level of Ncoa3 decreases, indicating that lysine 639 and 673 are its ubiquiti- nation sites. Taken together, we identified two ubiquitination sites at lysine 639 and 673 of Ncoa3. Ubiquitination of these two lysine residues leads to proteasomal degradation of Ncoa3.
Bibliography:31-1940/Q
Ncoa3 is a transcriptional coactivator involved in a wide range of biological processes. Regulation of Ncoa3 protein stability is important to control its activity precisely. Here, we found that deleting amino acid residues 614-740 of Ncoa3 enhances the protein expression level. Replacing two lysine residues, K639 and K673, within this region by argin- ine, increases the stability of the luciferase fusion protein as well as Ncoa3 protein. When these two lysine residues are mutated to arginine, the overall ubiquitination level of Ncoa3 decreases, indicating that lysine 639 and 673 are its ubiquiti- nation sites. Taken together, we identified two ubiquitination sites at lysine 639 and 673 of Ncoa3. Ubiquitination of these two lysine residues leads to proteasomal degradation of Ncoa3.
Ncoa3; ubiquitination; protein stability;proteasomal degradation
Chunlin Mou, Yanqin Zhang, Weiyu Zhang, Yu Ding, and Lingyi Chen( State key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin 300071, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1672-9145
1745-7270
DOI:10.1093/abbs/gmu096